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Abstract—In this paper, we present a novel lightweight path for
deep residual neural networks. The proposed method integrates
a simple plug-and-play module, i.e., a convolutional Encoder-
Decoder (ED), as an augmented path to the original residual
building block. Thanks to the abstract design and ability of
the encoding stage, the decoder part tends to generate feature
maps where highly semantically relevant responses are activated
while irrelevant responses are restrained. By a simple element-
wise addition operation, the learned representations derived from
the identity shortcut and original transformation branch are
enhanced by our ED path. Furthermore, we exploit lightweight
counterparts by removing a portion of channels in the original
transformation branch. Fortunately, our lightweight processing
does not cause an obvious performance drop, but bring computa-
tional economy. By conducting comprehensive experiments on Im-
ageNet, MS-COCO, CUB200-2011 and CIFAR, we demonstrate
the consistent accuracy gain obtained by our ED path for various
residual architectures, with comparable or even lower model
complexity. Concretely, it decreases the top-1 error of ResNet-50
and ResNet-101 by 1.22% and 0.91% on the task of ImageNet
classification, and increases the mmAP of Faster R-CNN with
ResNet-101 by 2.5% on the MS-COCO object detection task.
Code is available at https://github.com/Megvii-Nanjing/ED-Net.

Index Terms—Convolutional neural networks, deep learning,
encoder-decoder, residual networks, base model.

I. INTRODUCTION

DEEP Convolutional Neural Networks (DCNNs) have
achieved a series of breakthroughs in various fundamental

computer vision tasks, such as image classification [26], [16],
object detection [12], [35], [51], semantic segmentation [29],
and many other tasks [24], [7], [46], [1], [9], [33], [45]. These
successes mainly derive from the discriminative representation
learned by DCNNs. The deep representation can also generalize
well to many other different tasks after supervised training
on large scale image datasets e.g., ImageNet [37] and MS-
COCO [28].
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Figure 1: Visualization of the learnt concept of “dog” under
cluttered background by using the original residual network
vs. our ED path augmented one. First row (a) shows three
activation maps from the input channels of the last building
block of ResNet-50. Second row (b) presents the input image,
activation map averaged over all input channels, and our en-
hanced activation map – it properly highlights the discriminative
regions and meanwhile restrains irrelevant backgrounds.

Convolutional filters are the core of DCNNs. DCNNs are con-
structed by stacking a series of convolutional layers, combined
with non-linear activation functions and down-samplings. By
end-to-end joint training, these filters are optimized according to
the final loss function, and generate distributed representations
of input data in high-level layers [4]. However, as shown in
the first row of Figure 1, for a test image labeled “dog”, it is
common to observe that some irrelevant backgrounds still have
highly activated responses. Although these noisy activations
might be suppressed by the following layers, in theory, they
still have a chance to hurt the recognition accuracy.

Aiming at the aforementioned issues, recent works attempt
to improve the representational ability of DCNNs by refining
intermediate feature responses with attention mechanisms [43],
[19], [47]. For example, Hu et al. [19] introduced Squeeze-
and-Excitation (SE) blocks to explicitly capture the inter-
dependencies between channel-wise feature responses. SE
blocks have demonstrated good accuracy gains over various
deep architectures, including ResNet [16] and ResNeXt [48]
series. Woo et al. [47] proposed Convolutional Block Attention
Module (CBAM) which augments existing SE blocks with
an additional spatial attention module. However, the spatial
attention of CBAM is highly dependent on SE blocks, and
cannot perform well individually. In this paper, we propose a
simple module, which can be integrated into any deep residual
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architecture without dependence on other attention modules.
Our method attends on object of interests more accurately
than previous methods (cf. Figure 4), and achieves better
recognition accuracy on various vision tasks, e.g., general
image classification, object detection, instance segmentation
and fine-grained classification.

Our motivation relies on two key insights. First, instead of
learning augmented attention weights, a specialized module
can be designed to directly extract the most informative
features from redundant inputs, and then enhance the CNN
representations with the extracted features. Secondly, since the
popular encoder-decoder architecture can efficiently extract
compact and informative codes through purely unsupervised
learning [41], it can be expected to extract discriminative
features from redundant inputs through supervised training.

We elaborate the effectiveness of our method under the deep
residual learning framework [16], [48]. Specifically, we keep
the original structure of residual building blocks unchanged
as they are crucial for training very deep architectures, but
augment them with a parallel convolutional encoder-decoder
(ED) path (see Figure 2) to enhance the learned representations.
Driven by the dimensionality reduction of encoders, the decoder
part tends to generate feature maps where highly semantically
relevant responses are activated while the irrelevant responses
are restrained. By a simple element-wise addition operation,
the learned representations derived by identity shortcuts and
the original transformation branch can be enhanced by these
attended decoder responses. Furthermore, compared with the
activation units of input features, the activation units in
the decoder features have larger receptive fields, and thus
can incorporate more useful context information into the
learned representations. This property is beneficial for context-
dependent down-stream recognition tasks, such as object
detection and instance segmentation.

For efficiency, we equip our ED path with grouped convolu-
tions as a default option to reduce model and computational
complexity. Furthermore, we exploit a lightweight processing
strategy for residual networks augmented with our ED path. By
removing a portion of channels in the original transformation
branch, we find that it brings lower floating point operations
(FLOPs), but does not cause obvious accuracy drops.

We integrate our ED path into several residual architectures,
including the ResNet [16] and ResNeXt [48] series, and also
the Squeeze-and-Excitation (SE) networks [19]. We provide
extensive evaluations and analyses on ImageNet [37], CUB-
200-2011 [42], and CIFAR [25] for image classification, and on
MS-COCO [28] for object detection and instance segmentation.
With our ED path, we achieve consistent accuracy gains
for various residual architectures, e.g., decreasing the top-
1 error by 1.22% and 0.91% for ResNet-50 and ResNet-
101 on ImageNet classification, and for MS-COCO object
detection, increasing mmAP by 1.9% and 2.5% for Faster
R-CNN [35] with ResNet-50 and ResNet-101 as backbones.
Furthermore, our ED path can be conveniently combined with
state-of-the-art deep architectures (e.g., SENets [19]) to further
improve recognition accuracy. In addition, our lightweight ED
counterpart of ResNet-50, which almost reduces half of floating
point operations, but still outperforms ResNet-50 in accuracy

on ImageNet classification.
To the best of our knowledge, our method is the first

attempt to exploit the ability of supervised discriminative
feature extraction of encoder-decoder structures, for enhancing
the representational power of deep residual architectures. The
main contributions of this paper are as follows:

• We propose a simple but effective encoder-decoder path
for deep residual learning, which can enhance the learned
representations through an element-wise addition opera-
tion.

• We explore a lightweight design for deep residual net-
works attached with our encoder-decoder path, which
does not cause obvious performance drops, but brings
computational economy.

• We conduct extensive experiments to verify the effective-
ness of our ED path. Both quantitative and qualitative
results validate that our proposal can benefit various deep
residual architectures on diverse vision tasks.

The rest of the paper is organized as follows. Section II
retrospects the related works. Section III details proposed
method and Section IV describes the implementation details.
Experiments and analysis are provided in the Section V,
followed by the conclusion part in Section VI.

II. RELATED WORK

In this section, we briefly review some closely related
works, including deep residual networks, encoder-decoder
architectures, and group convolutions.

A. Deep residual networks

Deep convolutional neural networks were significantly im-
proved by the residual learning paradigm [16] introduced
in 2016. Residual networks [16] use identity mappings as
shortcut connections [5], [36], letting the transformation layer
to fit a residual mapping, rather than the original unreferenced
one. This modification simplifies the optimization of very
deep networks, leading to record-breaking performance on
challenging vision tasks, such as ImageNet classification and
MS-COCO object detection.

Very recently, researches show that extending the transfor-
mation layers of ResNets into multi-branch structures can
improve the generalization ability [48], [38]. For example,
ResNeXt [48] uses a set of transformations as residual units,
and shows that increasing the size of the set of transformations
is able to improve classification accuracy. Previous multi-branch
residual units mainly feature efficient model design under the
restricted condition of maintaining complexity. Instead, our
goal of augmenting residual building blocks with an ED path is
to extract the discriminative information from redundant inputs,
and refine the learned representations by a simple element
addition operation.

Invertible ResNets (i-ResNets) [3] is recently proposed to
define a generative model that can be trained by maximum like-
lihood on unlabeled data, with a tractable approximation to the
Jacobian log-determinant of a residual block. i-ResNets provide
a unified model paradigm for classification, density estimation,
and generation. Instead of equipping the classification CNNs
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Figure 2: Left: a residual building block augmented with our encoder-decoder path. Right: example images illustrating the
activations from different paths in conv5_3 block of ResNet-50. The input feature maps seem to have rather even activations,
and some background may also be activated. In contrast, the feature maps produced by our encoder-decoder module tend to
generate focused activations which embody in the most discriminative regions of the image.

with the ability of generative modeling, our encoder-decoder
structures aim to extract the discriminative information from
layer inputs, which can benefit the representational power and
improve the classification accuracy of the residual network
family.

It is worth noting that our convolutional encoder-decoder
structures significantly differ from conventional bottleneck
structures, although performing channel reduction and restora-
tion. Firstly, instead of using 1 × 1 layer for dimension
reduction and restoration, we directly apply 3 × 3 convolu-
tional/deconvolutional layer as encoder and decoder, where
the convolutional layer performs dimension reduction and the
deconvolutional layer performs dimension restoration. Secondly,
our encoder-decoder structures first down-sample the feature
maps and then recover them with a scaling step of 2, while
all the convolutional layers in conventional bottleneck residual
blocks produce output maps of the same size in the same
network stage. Essentially, these differences are due to the fact
that our encoder-decoder structures aim to extract the most
informative features from layer inputs by the means of spatial
dimensionality reduction, while the bottleneck residual blocks
aims to reduce the computational cost when increasing the
depth of network.

B. Encoder-decoder architectures

The encoder-decoder architectures have been widely used
in dimensionality reduction [17], feature learning [20], [23],
[10], and semantic segmentation [32], [2]. For instance, using
stacked restricted Boltzmann machines as the encoder [17],
the extracted low-dimensional representations can recover the
structure of input data, much better than linear projection
methods like principal component analysis. Convolutional
encoder, when used for unsupervised feature learning, can learn
powerful representations that generalize better in high-level
vision tasks than hand-crafted features [20]. In recent years,
convolutional encoder-decoder architectures are widely adapted

to solve various challenging vision tasks [32], [2], [31]. In this
paper, we validate another perspective of convolutional encoder-
decoder that it is beneficial to extract the most informative
features in an image when used as an augmented path of a
CNN model.

Previous works, which integrate encode-decoder modules
into CNNs, mainly aim to equip CNNs with the ability of
generative modeling or unsupervised learning. Instead, our
goal is to enhance deep residual architectures with encode-
decoder modules to improve the representational power. Due
to the distinct difference in motivation, our method does not
involve a reconstruction loss adopted by previous works, letting
the encoder-decoder path only to extract discriminative repre-
sentations from redundant layer inputs. In [50], a generative
path (trained by reconstruction) is integrated into a discrimi-
native convolutional architecture, yielding good accuracy on
a variety of semi-supervised and supervised tasks. In [34], a
novel reconstruction-based framework is designed for effective
identity and non-identity feature disentanglement. These two
works differ from ours in both motivation and implementation,
and lack the ability of improving the classification accuracy of
the very deep ResNet family.

C. Grouped convolutions

Group convolution can be formally defined as: A grouped
convolutional layer separates the input channels into groups,
and then apply separated convolutional filters for each group,
and concatenate the output map of each group independently to
form the final output map. If the number of groups is equal to
the number of channels, then this layer performs channel-wise
convolution.

Grouped convolution is firstly introduced in AlexNet [26]
(if not earlier) for deploying the network on two GPUs, each
processing one group of feature maps. Ever since, group convo-
lutions have been widely adopted in CNN architecture design,
both for large networks like Inception series [39], [40], [38]
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and ResNeXt [48] pursuing high accuracy, and for lightweight
models like Xception [8], MobileNet [18] and ShuffleNet [49]
customized for mobile devices with very limited computing
power. In this paper, we use group convolutions to reduce
the computational and parameter complexity of our encoder-
decoder branch. In particular, while ResNeXt can be regarded
as a multi-branch variant of ResNet, our method differs with
ResNeXt in the fact that we keep the transformation branches
of ResNet and ResNeXt unchanged, and augment them with
a novel encoder-decoder path to further enhance the learned
representations. In contrast, ResNeXt directly replaces the
original transformation branches of ResNet with the grouped
multi-branch structures.

III. APPROACH

In this section, we elaborate our design choices of the
encoder-decoder (ED) path for residual networks, and then
show visualization and qualitative analyses, and finally present
discussions with some closely related works.

A. Encoder-decoder paths for ResNets

1) Grouped encoder-decoder module: Our goal is to design
an effective encoder-decoder module, which can be conve-
niently applied with the building blocks of state-of-the-art deep
residual learning architectures. Among many possible choices,
we opt for the simplest. Concretely, we use a 3×3 convolutional
operation with stride of 2 as the encoder, and use the same
filter size and stride for the decoder (a transpose convolution
layer). We follow the design principle of the transformation
branch in ResNets [16], and experimentally set the number of
encoder filters to be the number of 3× 3 filters used by the
transformation branch, and the number of decoder filters to be
the dimension of output channels of the block.

Directly equipping residual building blocks with augmented
encoder-decoder module will certainly cause considerable
computational burdens. To address this drawback, we employ
grouped convolutions to strike a good trade-off between model
performance and complexity. Specifically, we split the 3× 3
convolution filters in all encoders and decoders into G groups
(G = 32 in defaults), reducing the model and computational
complexity to a large extent. It is worth noting that our accuracy
gain is derived from the encoder-decoder path rather than
grouped convolutions, which will be verified by experiments
in Section V-D.

2) Integration into ResNet and ResNeXt: It is convenient
and straightforward to integrate our encoder-decoder module
into any deep residual architectures. In this work, we mainly
focus on ResNet [16] and ResNeXt [48] series. Figure 2 (a)
shows a general encoder-decoder augmented residual building
block, and Figure 3 demonstrates the building blocks of our ED-
ResNet-50 and ED-ResNeXt-50. We note that our architecture
differs from ResNeXt, which improves ResNet by replacing the
original transformation branch with a multi-branch structure.
Instead, we keep the original architectures of both ResNet
and ResNeXt unchanged, but augment them with a novel
encoder-decoder path. Detailed architecture comparisons of our
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Figure 3: Building block of ED-ResNet-50 / ED-ResNeXt-50.

ED-ResNet-50 with the original ResNet-50 are presented in
Table I.

We introduce the encoder-decoder module into residual
building blocks as an augmented branch, and summarize the
outputs from the identity shortcut, original transformation path
and the encoder-decoder path as the final output of the building
block. We demonstrate that this simple element-wise addition
operation is effective to utilize the informative features carried
by the encoder-decoder path to refine learned representations.
Coincidently, similar enhancement strategy based on element-
wise addition is also employed in [27] to combine multi-level
features for object detection.

It is worth noting that when changing the dimension of
input/output channels across stages, we perform a shared linear
projection for both identity shortcuts and encoder-decoder paths
to match the dimensions. This design originates from the fact
that the projection shortcuts, which have shown to be very
effective for increasing dimensions [16], can be regarded as
an approximation of original inputs. Thus, it can be directly
fed into our encoder-decoder path.

For notation simplicity, in the following, we term ResNets
and ResNeXts with our augmented encoder-decoder paths as
“ED-ResNets” and “ED-ResNeXts”. Both ED-ResNets and
ED-ResNeXts are easy to implement by current open-source
deep learning toolboxes.

3) Lightweight implementations: Equipping original residual
networks with our ED paths will cause a slight increment
on the number of model parameters and FLOPs, as shown
in Table I (25.5M → 27.7M for the number of parameters
and 4.1 × 109 → 4.3 × 109 for FLOPs). For computational
efficiency, and also for fair comparisons, we explore lightweight
implements of ED-ResNets and ED-ResNeXts by cutting a
portion of channels in the original transformation branch.

The intuition is that since the encoder-decoder modules can
extract discriminative representations from redundant inputs,
they should to some extent reduce the burden of representation
learning for original transformation branches. We empirically
observe that even when removing half of 3×3 convolutional
filters in original transformation branches1, ResNet-50 with
our ED path still outperform the original network, while the
FLOPs is reduced to 51%. More detailed quantitative results
about the tradeoff between model accuracy and computational
complexity are given in Table VI.

1After the channel pruning, the number of 1×1 filters in previous layers
are also required to adjust accordingly.
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Table I: Left: Original ResNet-50. Right: Our ED-ResNet-50 with 3× 3 convolutional encoder (stride =
2) and 3× 3 convolutional decoder equipped with grouped convolutions (] group = 32).

Stage Output Repeat ResNet-50 Our ED-ResNet-50
conv1 112 × 112 1 7 × 7, 64, stride=2 7 × 7, 64, stride=2

max-pooling 56 × 56 1 3 × 3, 64, stride=2 3 × 3, 64, stride=2
– – – Transformation Shortcuts Transformation1 Encoder-decoder Shortcuts

conv2 56 × 56 3
[1 × 1, 64]
[3 × 3, 64]

[1 × 1, 256]

Identity
mapping

[1 × 1, 64]
[3 × 3, 64]

[1 × 1, 256]

[conv, 3 × 3, 64] group=32
[deconv, 3 × 3, 256] group=32

Identity
mapping

conv3 28 × 28 4
[1 × 1, 128]
[3 × 3, 128]
[1 × 1, 512]

Identity
mapping

[1 × 1, 128]
[3 × 3, 128]
[1 × 1, 512]

[conv, 3 × 3, 128] group=32
[deconv, 3 × 3, 512] group=32

Identity
mapping

conv4 14 × 14 6
[1 × 1, 256]
[3 × 3, 256]

[1 × 1, 1024]

Identity
mapping

[1 × 1, 256]
[3 × 3, 256]

[1 × 1, 1024]

[conv, 3 × 3, 256] group=32
[deconv, 3 × 3, 1024] group=32

Identity
mapping

conv5 7 × 7 3
[1 × 1, 512]
[3 × 3, 512]

[1 × 1, 2048]

Identity
mapping

[1 × 1, 512]
[3 × 3, 512]

[1 × 1, 2048]

[conv, 3 × 3, 512] group=32
[deconv, 3 × 3, 2048] group=32

Identity
mapping

cls 1 × 1 1
Global average-pooling

1000-d fc,softmax
Global average-pooling

1000-d fc,softmax

] parameters 25.5M 27.7M 2

FLOPs 4.1 × 109 4.3 × 109

1Here, the “transformation” means the original transformation branch. Strictly, both the original transformation branch and our encoder-decoder branch
play the role of learning the transformation of input features.
2The number of parameters and FLOPs of our original ED-ResNet-50 can be further reduced by our lightweight implementations, e.g., cutting channels
in the original transformation branches. Empirical studies validate that cutting channels can produce a comparable model complexity, but our model
can achieve better classification accuracy, cf. Table VI.

B. Visualization and analyses
To intuitively interpret the role played by our encoder-

decoder paths, we visualize the activation maps from different
branches (as well as the combinations of them) in a residual
building block. The individual branches include the original
transformation branch, the identity shortcut branch and our
encoder-decoder branch. We follow the process in [44] for
feature visualization. The activation tensor produced by the
last convolutional block of ResNets or ResNeXts is firstly
obtained, and then added up through the depth direction to get
a 2-D matrix. The 2-D matrix is then resized to the size of
input image, and visualized by OpenCV API to demonstrate
the activations on the input image.

Figure 2 gives the visualization results. In each row, the
combined activation maps are computed by directly adding up
individual maps. We can see that the input feature response x
might have a wide range of spatial activations, including some
irrelevant backgrounds. Taking x as inputs, the encoder-decoder
branch ED(x) is able to produce focused activations on the
most discriminative regions of input images, while suppressing
irrelevant backgrounds. By direct element addition operation,
the encoder-decoder branch ED(x) can effectively enhance
original input features, and thus generate better final image
representations.

We also note that the output of augmented building block is
F(x)+x+ED(x), where F(x) and ED(x) can be viewed as
two different transformation branches. During joint end-to-end
training, these two branches seem to interact with each other.
However, as shown in Figure 2 (b), we empirically find that
the original transformation branch F(x) (in the 3rd column)
and the encoder-decoder branch ED(x) (in the 4th column)
play quite different roles in high-level residual building blocks.
F(x) tends to learn a very small perturbation w.r.t. the input x,
while ED(x) tends to extract more informative features from x.
The output of F(x) is consistent with the observation in [16] –
high-level convolutional layers in ResNets produce very small

magnitudes of responses. This, from another side, suggests that
our encoder-decoder paths do not impose obvious impact on
the function of original transformation branches.

C. Comparisons to SENets and CBAM

We would like to emphasize that, our method is signifi-
cantly different from traditional attention based methods like
SENets [19] and CBAM [47]. Firstly, we do not learn additional
attention weights to refine feature responses. Instead, we
utilize an encoder-decoder module to directly extract the most
informative features from raw inputs, and then refine the learned
representation by the simple element-wise addition. Secondly,
the abstract design of the ED path allows us to reduce the
computational burden of the original transformation branch in
ResNets without obvious accuracy drops, which however has
not been discovered in literature by attention based methods.
Thirdly, our method does not depend on any attention modules.
While, CBAM is an augmented contribution highly dependent
on SENets, as it inserts additional spatial attention into SENets.

Since our method improves the representational power
of CNNs from a novel perspective, it can be conveniently
combined with the attention based methods to further improve
recognition accuracy. As validated in experiments, our ED
path, when integrated with SENets, consistently improves the
baselines for ImageNet classification, and outperforms CBAM
in many cases (cf. Table IV). Furthermore, although CBAM
further exploits spatial attention on the basis of SENets, our
method still obtains consistently better results than CBAM
on challenging tasks including object detection (cf. Table X
and Table XII), instance segmentation (cf. Table XI) and fine-
grained recognition (cf. Table XIII).

IV. IMPLEMENTATION DETAILS

Following the practices in [26], [16] on the ImageNet dataset,
the input images are 224 × 224 patches with the per-pixel



ACCEPTED BY IEEE TNNLS 6

Table II: Comparisons to baselines on ImageNet-1K.

Model Top-1 err. Top-5 err.

ResNet-50 [16] 24.34 7.32
ResNet-50 + 2conv 23.75 6.98
ResNet-50 + ED (Ours) 23.12 6.54
ResNet-101 [16] 23.12 6.52
ResNet-101 + 2conv 22.69 6.34
ResNet-101 + ED (Ours) 22.21 6.23
ResNet-152 [16] 22.44 6.37
ResNet-152 + 2conv 22.39 6.34
ResNet-152 + ED (Ours) 21.98 6.09
ResNeXt-50 [48] 22.59 6.41
ResNeXt-50 + 2conv 22.56 6.37
ResNeXt-50 + ED (Ours) 22.01 6.11
ResNeXt-101 [48] 21.34 5.66
ResNeXt-101 + 2conv 21.30 5.63
ResNeXt-101 + ED (Ours) 20.93 5.32

mean subtracted, randomly cropped from resized images with
standard data augmentation and random horizontal flipping.
Optimization is performed by stochastic gradient descent with
momentum 0.9 and a mini-batch size of 256 on 8 GPUs, and
the weight decay is 0.0001. We start from a learning rate of
0.1, and divide it by 10 every 30 epochs, all models are trained
for 100 epochs. We adopt the weight initialization proposed
in [15]. When testing, we apply a single crop evaluation on
the validation set, where 224× 224 pixels are center cropped
from each image whose shorter edge is first resized to 256.
We perform batch normalization [22] after the convolutions,
then ReLU [30] is applied as the non-linear activation function.
Notably, in the ED path, ReLU is not performed after the
batch normalization in convolutional decoder to avoid removing
negative responses. On the CIFAR-10 dataset [25], 4 pixels are
first padded on each side of the image during training, then
we randomly crop 32× 32 pixels from the padded image or
its horizontal flip as inputs. In testing, we keep the original
image size unchanged. All models are trained for 300 epochs
and the learning rate is 0.1 which is divided it by 10 in the
schedule of 150 and 225. We use a weight decay of 0.0001, a
momentum of 0.9, and a mini-batch size of 128 on 2 GPUs.

V. EXPERIMENTS

We conduct four series of experiments to verify the effec-
tiveness of the proposed encoder-decoder (ED) path for deep
residual networks, including ImageNet-1K [37] classification,
MS-COCO [28] object detection and instance segmentation,
fine-grained image recognition on CUB200-2011 [42], and
ablation studies on CIFAR-10 [25]. We re-implement all the
models by PyTorch for fair comparisons.

A. ImageNet classification

On ImageNet-1K [37] classification, we first compare our
method to baselines and SENets, then validate the effectiveness
of our ED path under lower computational cost.

1) Comparisons to baselines: We consider ResNet and
ResNeXt series as the most important baselines of our method.
Despite our efforts to reproduce the reported results, there are
many factors to effect the re-implemented accuracies, to name a
few, deep learning frameworks, undisclosed training tricks, etc.
In fact, our reimplemented ResNet series perform better than
the reported ones in the SENet paper, but our re-implemented

Table III: Comparisons to ResNets for ImageNet-1K classifi-
cation on top-1/5 errors, parameters, FLOPs and latency.

Model Top-1 err. Top-5 err. parameters FLOPs latency

ResNet-50 24.34 7.32 25.5 × 106 4.1 × 106 0.18s
ResNet-50 + ED (Ours) 23.12 6.54 26.7 × 106 4.3 × 109 0.19s
ResNet-101 23.12 6.52 49.1 × 106 7.9 × 109 0.38s
ResNet-101 + ED (Ours) 22.21 6.23 51.4 × 106 8.2 × 109 0.40s
ResNet-152 22.44 6.37 72.8 × 106 11.7 × 109 0.55s
ResNet-152 + ED (Ours) 21.98 6.09 76.3 × 106 12.2 × 109 0.58s

Table IV: Improvements over SENets and CBAM on Ima-
geNet classification.

Model Top-1 err. Top-5 err.

SE-ResNet-50 [19] 23.27 6.59
SE-ResNet-50 + CBAM [47] 22.66 6.31
SE-ResNet-50 + ED (Ours) 22.46 6.28
SE-ResNet-101 [19] 22.37 6.13
SE-ResNet-101 + CBAM [47] 21.51 5.69
SE-ResNet-101 + ED (Ours) 21.71 6.04
SE-ResNeXt-50 [19] 21.61 5.72
SE-ResNeXt-50 + CBAM [47] 21.92 5.91
SE-ResNeXt-50 + ED (Ours) 21.20 5.64
SE-ResNeXt-101 [19] 21.32 5.54
SE-ResNeXt-101 + CBAM [47] 21.07 5.59
SE-ResNeXt-101 + ED (Ours) 20.89 5.30

ResNeXt series are slightly inferior. We also implement a
simple baseline by replacing the encoder-decoder path with
a two-layer 3×3 (grouped) convolution process that has the
same model complexity. This aims to justify the advantages
of ED path over the augmented vanilla convolutional path.

As shown in Table II, ResNets and ResNeXts with ED path
consistently outperform the baseline architectures. In particular,
it decreases the top-1 error of ResNet-50 and ResNet-101 by
1.22% and 0.91%, respectively. ED-ResNet-50 has a top-1 error
of 23.12%, similar to much deeper architecture ResNet-101
which almost has double FLOPs. Similarly, the top-1 and top-5
errors of ED-ResNet-101 is 22.21% and 6.23%, outperforming
deeper ResNet-152. Our ED variants of ResNets and ResNeXts
are consistently superior to “two-conv” baselines, although
the latter can also improve original ResNets and ResNeXts.
We note that the augmented “two-conv” path, when equipped
with ResNeXts, could only obtain very minimal improvements
compared to our ED path. It conjectures that this is because
the grouped “two-conv” path has similar behaviors with the
original transformation branch of ResNeXt, and thus can hardly
introduce more useful information during training.

Besides accuracy, we further conducted extensive experi-
ments to show the comparisons between our methods with
ED path and the baseline ResNet series on top-1/5 errors,
parameters, FLOPs, and latency. We measure the latency with
batch size 1 on single score of Intel Xeon CPU E5-2690. As
shown in Table III, our ED module adds minimal additional
cost on parameters, FLOPs, and latency. We argue that the
added cost is negligible, considering the accuracy gains brought
by the ED path. For example, our ED-ResNet-50 takes 0.19s
to process an image and ResNet-101 takes 0.38s, while the
top-1/5 errors of our ED-ResNet-50 are similar to ResNet-101.
In the future, we will investigate deeply about how to design
lightweight CNN architectures with our ED path.

2) Improvements over State-of-the-Art: Our method im-
proves residual networks from a different perspective with re-
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Table V: Improvements over Res2Nets on ImageNet-1K.

Model Top-1 err. Top-5 err.

Res2Net-50 22.01 6.15
Res2Net-50 + ED (Ours) 21.21 5.56
Res2NeXt-50 21.76 6.09
Res2NeXt-50 + ED (Ours) 21.03 5.42
SE-Res2Net-50 21.56 5.94
SE-Res2Net-50 + ED (Ours) 21.02 5.31
Res2Net-101 20.81 5.57
Res2Net-101 + ED (Ours) 20.01 5.08

cent state-of-the-art CNN architectures, including SENets [19],
CBAM [47], and Res2Net [11]. Therefore, we integrate our
ED path into these architectures to investigate whether it can
further boost the recognition accuracy. As shown in Table IV,
our ED version of SENets achieve reasonable improvements
over original SENets. ED path can further decrease the top-
1 error of SE-ResNet-50 and SE-ResNeXt-50 by 0.81% and
0.41%. Particularly, SE-ResNeXt-50 with our ED path even
outperforms much deeper SE-ResNeXt-101. For CBAM [47],
it improves SENets by combining global average- and max-
pooling features, and combines an additional spatial attention
module with SE blocks. In Table IV, we also compare our
method with CBAM. Our ED variants of SE-ResNet-50 and
SE-ResNet-101 achieves comparable performance with CBAM,
while the ED variants of SE-ResNeXt-50 and SE-ResNeXt-101
outperforms the corresponding CBAM counterparts.

We also integrate our encoder-decoder path into recent
state-of-the art Res2Net [11] series that enhance the original
ResNet series with multi-scale representation. Table V gives
the comparison results with the Res2Net series. The encoder-
decoder version of Res2Nets consistently outperform original
Res2Nets for various network architectures, including ResNet,
ResNeXt and SE-Net. In particular, even for the deep Res2Net-
101 architecture, our encoder-decoder path can still reduce the
top-1 and top-5 error rate on ImageNet-1K classification by
0.8% and 0.49%, respectively. These results demonstrate that
our encoder-decoder path can improve deep residual networks
in conjunction with multi-scale representations.

3) Comparisons under comparable FLOPs: The proposed
encoder-decoder path imposes a slight increment in model and
computational burden to the baseline networks. To perform an
apple-to-apple comparison, we remove a portion of channels
from original transformation branches of ED-Nets to align their
FLOPs with baseline networks. Specifically, we directly remove
{4, 8, 16, 32} channels for 3×3 transform convolutional layers
from conv 2 to conv 5 stages in ED-ResNet series; while
for ED-ResNeXt series, we remove {20, 40, 80, 160} channels
from 3× 3 convolutional layers at different stages, and then
split the channels in all stages into 36 groups. We denote these
reduced architectures as “ED-ResNet-A” / “ED-ResNeXt-A”.

As shown in Table VI, both ED-ResNet-A and ED-ResNeXt-
A consistently outperform ResNets and ResNeXts, in the same
setting, by a significant margin. For example, ED-ResNet-50-A
decreases the top-1 and top-5 errors of the baseline ResNet-50
by 1.26% and 0.85%, even slightly better than the original
ED-ResNet-50 without channel pruning. ED-ResNet-101-A
decreases the top-1 error of ResNet-101 by 0.89%, which
is comparable with the performance of original ED-ResNet-

Table VI: Results of efficient ED-Nets for ImageNet-1K
classification, by removing a portion of 3×3 convolutional
filters from original transformation branches.

Model top-1 err. top-5 err. FLOPs

ResNet-50 [16] 24.34 7.32 4.1×109

ED-ResNet-50-A1 23.08 6.47 4.0×109

ED-ResNet-50-B2 23.94 6.95 2.1×109

ResNet-101 [16] 23.12 6.52 7.9×109

ED-ResNet-101-A 22.23 6.24 7.8×109

ED-ResNet-101-B 23.14 6.49 3.9×109

ResNet-152 [16] 22.44 6.37 11.7×109

ED-ResNet-152-A 22.01 6.11 11.5×109

ED-ResNet-152-B 22.52 6.41 5.6×109

ResNeXt-50 [48] 22.59 6.41 4.2×109

ED-ResNeXt-50-A 22.03 6.12 4.2×109

ED-ResNeXt-50-B 22.61 6.43 2.9×109

ResNeXt-101 [48] 21.34 5.66 8.0×109

ED-ResNeXt-101-A 20.97 5.33 7.9×109

ED-ResNeXt-101-B 21.57 5.71 5.4×109
1“-A” means that we remove a portion of channels of the transform branches to make

ED-Net have the same/comparable FLOPs as that of the baseline network.
2“-B” means that we remove half of the 3×3 convolution filters of the transform

branches to make ED-Net have much less FLOPs than that of the baseline network.

101. These results suggest that our encoder-decoder paths can,
to some extent, reduce the computational overhead of the
transformation branches, due to their enhancement over the
learned representations. In addition, since our ED-ResNeXt-A
changes the original group of ResNeXt from 32 to 36, we
also implement a modified version of ResNeXt-50 for fair
comparisons. This new architecture is ResNeXt-50-36×3d,
which has 36 groups while the width of bottleneck is 3 (the
same as ED-ResNeXt-50-A). ResNeXt-50-36×3d achieves top-
1 error of 23.04% and top-5 error of 6.46%, which is obviously
inferior to our ED-ResNeXt-50-A.

4) Exploring efficient ED-Nets: We ulteriorly exploit very ef-
ficient implementations of ED-Nets by removing half channels
of 3×3 convolutional layers at all stages for ED-ResNet and
ED-ResNeXt series. This greatly reduces FLOPs of original
ED-Nets, i.e., reducing 49% and 31% FLOPs of the original
ResNet-50 and ResNeXt-50, respectively. We denote these
efficient architectures as “ED-ResNet-B” / “ED-ResNeXt-B”.

As reported in Table VI, although we greatly reduce FLOPs,
ED-ResNet-B and ED-ResNeXt-B still obtains comparable or
even slightly better performance than the baseline networks.
For example, ED-ResNet-50-B still achieves better performance
than the baseline ResNet-50, and ED-ResNeXt-50-B only
suffers from very slight performance degradation compared
to ResNeXt-50. These results suggest that: 1) the encoder-
decoder modules allow us to lighten the computational burden
of original transformation branches to a large extent, without
obvious performance degradation; 2) encoder-decoder modules
have the potential in the model compression and efficient model
design, which is a promising future work direction.

In addition, to verify whether the efficient design property is
unique to the ED path, we take ED-ResNet-50-B for example,
and replace the ED path with a two-layer 3×3 (grouped)
convolution process. The top-1 and top-5 error of this two-
conv alternative are 24.42% and 7.59%, respectively, which
are inferior to both the ResNet-50 and our ED-ResNet-50-B.

5) Ablation studies: We conduct ablation studies on
ImageNet-1k to investigate three questions. Firstly, can we
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Table VII: Comparisons between original ResNets (ResNeXts),
our ED-Nets, and ED counterparts without identity mapping
on ImageNet-1k classification, where “w.” means “with”, “w/o.”
means “without”, and “ID map” means “identity mapping”.

Model Top-1 err. Top-5 err.

ResNet-50 24.34 7.32
ResNet-50 w. ED (Ours) 23.12 6.54
ResNet-50 w. ED w/o. ID map 25.19 7.73
ResNet-101 23.12 6.52
ResNet-101 w. ED (Ours) 22.21 6.23
ResNet-101 w. ED w/o. ID map 32.96 12.41
ResNet-152 22.44 6.37
ResNet-152 w. ED (Ours) 21.98 6.09
ResNet-152 w. ED w/o. ID map 42.66 19.38
ResNeXt-50 22.59 6.41
ResNeXt-50 w. ED (Ours) 22.01 6.11
ResNeXt-50 w. ED w/o. ID map 23.99 7.14
ResNeXt-101 21.34 5.66
ResNeXt-101 w. ED (Ours) 20.93 5.32
ResNeXt-101 w. ED w/o. ID map 32.97 12.67

Table VIII: Comparisons between original ResNets (ResNeXts),
our ED-Nets, and the counterparts by replacing all transfor-
mations with our ED modules on ImageNet-1k classification,
where “w.” means “with” and “w/o.” means “without”.

Model Top-1 err. Top-5 err.

ResNet-50 24.34 7.32
ResNet-50 w. ED (Ours) 23.12 6.54
ResNet-50 w. ED w/o. transform 31.07 11.37
ResNet-101 23.12 6.52
ResNet-101 w. ED 22.21 6.23
ResNet-101 w. ED w/o. transform 30.01 10.77
ResNet-152 22.44 6.37
ResNet-152 w. ED 21.98 6.09
ResNet-152 w. ED w/o. transform 29.03 10.10
ResNeXt-50 22.59 6.41
ResNeXt-50 w. ED 22.01 6.11
ResNeXt-50 w. ED w/o. transform 29.13 10.12
ResNeXt-101 21.34 5.66
ResNeXt-101 w. ED 20.93 5.32
ResNeXt-101 w. ED w/o. transform 28.22 9.49

discarding the identity mapping of ResNets (ResNeXts) when
having our ED paths? Secondly, can we replacing all the
transformation branches of ResNets (ResNeXts) by our ED
branches? Thirdly, can we benefit from pre-trained ResNets
(ResNeXts) when attaching our ED paths?

For the first question, we conduct a series of experiments by
discarding identity mapping of deep residual architectures while
having our ED path. As shown in Table VII, for CNNs with
moderate depth (e.g., ResNet-50 and ResNeXt-50), replacing
the identity mapping with our ED path leads to a slight accuracy
drop. While for very deep residual networks such as ResNet-101
and ResNet-152, discarding the identity mapping while having
our ED path leads to significant performance degradation. These
results demonstrate that the identity shortcuts are crucial for
solving the degradation problem when training very deep neural
networks (e.g., ResNet-101 and ResNet-152), and can be hardly
replaced by other structures. However, when training networks
with moderate depth (e.g., ResNet-50), our encoder-decoder
paths can to some extent play the role of identity shortcuts, as
they can convey the discriminative features from layer inputs.

For the second question, we have conduct a series of
experiments by replacing all transformation branches with our
ED modules. Table VIII shows the comparison results. For all
deep residual architectures, this modification leads to significant

Table IX: Comparisons between original ResNets (ResNeXts),
our ED-Nets, and ED counterparts with pre-trained ResNets
(ResNeXts) on ImageNet-1k classification, where “w.” means
“with”.

Model Top-1 err. Top-5 err.

ResNet-50 24.34 7.32
ResNet-50 w. ED 23.12 6.54
ResNet-50 (pre-trained) w. ED 22.71 6.60
ResNet-101 23.12 6.52
ResNet-101 w. ED 22.21 6.23
ResNet-101 (pre-trained) w. ED 22.62 6.41
ResNet-152 22.44 6.37
ResNet-152 w. ED 21.98 6.09
ResNet-152 (pre-trained) w. ED 22.55 6.28
ResNeXt-50 22.59 6.41
ResNeXt-50 w. ED 22.01 6.11
ResNeXt-50 (pre-trained) w. ED 22.44 6.19
ResNeXt-101 21.34 5.66
ResNeXt-101 w. ED 20.93 5.32
ResNeXt-101 (pre-trained) w. ED 21.87 6.10

performance degradation. We believe that there are two key fac-
tors responsible for these results. Firstly, our encoder-decoder
structures are designed as a feature enhancement component
of ResNet family, which themselves are not sufficient for the
feature extraction task by the original transformation branches.
Secondly, our encoder-decoder structures have much less (about
1/20) computational complexity (FLOPs), compared to the
transformation branches of ResNets and ResNeXts. Although
our encoder-decoder modules can not directly replace all
transformation branches, with our ED modules, we can greatly
reduce the number of filters of the original transformation
branches without causing an obvious performance drop.

For the third question, we conduct a series of experiments
that fine-tune the pre-trained ResNets and ResNeXts, leaving
our encoder-decoder modules randomly initialized. We multiply
the original learning rate on ImageNet by 0.1 to prevent
the model from overfitting. Table IX shows the comparison
results. Interestingly, compared to the original ResNets and
ResNeXts, the pre-training process (along with our randomly
initialized encoder-decoder structures) can benefit the residual
architectures with moderate depth (e.g., 50 layers), but leads
to negligible performance improvement or even performance
degradation for deeper networks such as ResNet-152 and
ResNeXt-101. When compared with our encoder-decoder
counterparts of ResNets and ResNeXts, the pre-training process
does not show advantages, and causes performance degradation
in most cases. We speculate that the improvement by pre-
training for ResNets with moderate depth can be owed to
better initialization, as well as our encoder-decoder structures,
while the degradation problem for very deep networks might
be caused by overfitting. We consider in-deep analyses about
these results as our future work.

B. MS-COCO experiments

We further evaluate the generalization ability of our encoder-
decoder modules on object detection and instance segmentation
by using the MS-COCO dataset [28], which contains 80k
training images and 40k validation images.

1) Object detection: We train Faster R-CNN [35] as our
detection test bed, and then evaluate it on the 40k validation
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Table X: Object detection results on MS-COCO 40k valida-
tion set using Faster R-CNN [35].

Model mmAP AP@0.50 AP@0.75 AR100

ResNet-50 [16] 31.0 50.9 33.1 44.0
ResNet-50 + CBAM [47] 31.6 51.8 33.3 45.4
ResNet-50 + ED (Ours) 32.9 53.0 35.4 45.8
ResNet-101 [16] 32.5 52.0 34.9 45.4
ResNet-101 + CBAM [47] 34.2 54.4 36.1 46.2
ResNet-101 + ED (Ours) 35.0 54.9 37.5 47.9

Table XI: Instance segmentation results on MS-COCO 40k
validation set using Mask R-CNN [14].

Model mmAP AP@0.50 AP@0.75 AR100

ResNet-50 [16] 29.2 50.0 30.3 40.7
ResNet-50 + CBAM [47] 28.4 48.6 29.4 40.7
ResNet-50 + ED (ours) 30.3 51.4 31.6 41.5
ResNet-101 [16] 30.6 52.0 31.9 42.0
ResNet-101 + CBAM [47] 30.3 52.0 31.7 42.5
ResNet-101 + ED (ours) 31.6 53.2 33.0 42.5

images. The training code is based on [6], and we keep the
default settings for fair comparisons.

As shown in Table X, when using as the backbone, our
ED-ResNets can significantly boost the performance of Faster
R-CNN for general object detection. In particular, ED-ResNet-
50 outperforms ResNet-50 by 1.9% on MS-COCO standard
metric mmAP, and improves AP@IoU=0.75 by 2.3%, which is
even more significant than the improvement at AP@IoU=0.50.
It conjectures that this is because our ED paths help the
network to produce more accurate activations for objects of
interests, which can greatly ease the training of the regression
branch of Faster R-CNN, and lead to more accurate localization
results. Furthermore, ED-ResNet-101 improves 2.5% mmAP
for ResNet-101 based Faster R-CNN, which is a significant
improvement in object detection.

Also, there might be another important reason accounting
for our superior performance in object detection – the enlarged
receptive field, which is crucial for detecting some context-
dependent objects. Specifically, the spatial down-sampling
operation of the encoding stage enlarges the receptive fields
of the activation units of feature maps, and the decoding stage
keeps the receptive fields of the feature map units unchanged.
Then, through the element-wise addition, our encoder-decoder
path naturally incorporates more context information into the
learned representations. In the furture, the impacts of our
encoder-decoder path on the task of object detection can be
deeply investigated.

2) Instance segmentation: Instance segmentation is a chal-
lenging task as it requires correct prediction of pixel-level
object masks. We train Mask R-CNN [14] as the instance
segmentation test bed. Mask R-CNN is a general framework
that can predict both bounding boxes and pixel-level masks
for object of interests. We follow the codes of [13], and re-
implement it with PyTorch.

Table XI and Table XII show the instance segmentation
and object detection results by Mask R-CNN, respectively.
ResNets with encoder-decoder paths consistently improve the
performance of baseline ResNet for both tasks. For example,
ED-ResNet-50 outperforms ResNet-50 by 1.1% mmAP for
instance segmentation, and by 1.4% mmAP for object detection.

Table XII: Object detection results on MS-COCO 40k
validation set using Mask R-CNN [14].

Model mmAP AP@0.50 AP@0.75 AR100

ResNet-50 [16] 34.1 54.0 36.8 46.8
ResNet-50 + CBAM [47] 32.9 52.4 35.1 46.5
ResNet-50 + ED (Ours) 35.5 55.1 38.1 47.9
ResNet-101 [16] 36.3 56.1 39.0 49.0
ResNet-50 + CBAM [47] 36.0 56.1 38.5 49.4
ResNet-101 + ED (Ours) 37.5 57.3 40.1 49.6

Table XIII: Fine-grained recognition results on CUB200-
2011 [42].

Model Err. (depth=50) Err. (depth=101)

ResNet [16] 15.14 14.51
ResNet + CBAM [47] 15.01 14.40
ResNet + ED (Ours) 14.84 14.35
ResNeXt [48] 14.52 14.23
ResNeXt + CBAM [47] 14.41 14.11
ResNeXt + ED (Ours) 13.91 13.53

Furthermore, our ED-Nets show consistent advantages over
CBAM [47] when used as backbone for both object detection
and instance segmentation.

C. Fine-grained image recognition

We further evaluate our method for fine-grained visual
recognition using the CUB200-2011 dataset [42] that contains
11,788 images of 200 bird species. Besides, CUB200-2011 also
provides accurate instance mask annotations for birds, which
allows us to conduct a quantitative investigation about the
attention (highlighted) regions automatically generated by the
deep models. For a test image, the attention region is expected
to be the object of interests. For this dataset, we resize all
images to 448×448 in our experiments.

1) Classification accuracy: We compared our method with
ResNets and ResNeXts baselines, as well as the SENets and
CBAM version of them. As shown in Table XIII, our method
consistently achieves the best results under different depths,
showing its potential for fine-grained visual recognition.

2) Quantitative investigation about attention regions: We
perform quantitative evaluations on CUB200-2011 to validate
that our ED-based model can attend more accurate region of the
main object of interest. We follow [44] for localizing objects
(i.e., obtaining the attention regions). Specifically, the activation
tensor produced by the last convolutional block of ResNets
and ResNeXts is firstly obtained, and then added up through
the depth direction to get a 2-D matrix. In the following, we
compute the mean value of the matrix and regard it as the
threshold for localizing the object. We use the Intersection over
Union (IoU) between the attention region and the ground truth
mask as the metric of the “attention accuracy”.

The attention region (object localization) is shown in
Figure 4, which clearly shows that the ED path is beneficial
to remove the redundant activations and/or extract the most
informative features. The quantitative results are shown in
Table XIV, where our method consistently outperforms the
baseline methods.

We also investigate the attention regions produced by the
input features and output features of our ED path. As shown
in Table XV, the attention regions produced by the decoder
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Input image Ground truth 
mask

ResNet-50 ResNet-50 
+ CBAM

ResNet-50 
+ ED (Ours)

ResNet-50 ResNet-50 
+ CBAM

ResNet-50 
+ ED (Ours)

(a) Images and masks (b) Activation maps (c) Attention regions

Figure 4: Visualization of attention regions for some images from CUB200-2011, calculated for the last convolutional outputs
by different models. (a) Images and masks, where five bird images and corresponding ground truth masks are shown. (b)
Activation maps produced by ResNet-50, CBAM-integrated ResNet-50 (ResNet-50 + CBAM), and our ED-integrated ResNet-50
(ResNet-50 + ED) respectively. (c) Attention regions by thresholding the raw activation maps with the mean value, which
follows [44].

Table XIV: Quantitative comparisons of attention regions
generated by our methods and baselines on CUB200-2011 [42].

Model IoU (depth=50) IoU (depth=101)

ResNet [16] 54.99 55.57
ResNet + CBAM [47] 58.93 59.04
ResNet + ED (Ours) 59.86 59.97
ResNeXt [48] 55.03 55.62
ResNeXt + CBAM [47] 58.98 59.18
ResNeXt + ED (Ours) 59.92 60.12

Table XV: Quantitative comparisons of attention regions
generated by the input and decoder features of our ED path
on CUB200-2011 [42].

Feature IoU (depth=50) IoU (depth=101)

ResNet ED Input 51.76 52.43
ResNet ED Output 53.92 54.51
ResNeXt ED Input 52.08 52.97
ResNeXt ED Output 54.17 55.49

features of our ED path are more accurate than those produced
by the input features, which clearly shows that our ED path
is beneficial to extract the most informative features and/or
remove the redundant activations. Note that since our ED path
is only one path of the building block of ED-integrated ResNet
and ResNeXt, the “attention accuracy” of the decoder feature
is inferior to that of the full output of the building block, which
summarizes the output from the original transformation branch,
identity shortcut and our ED path.

Table XVI: Comparisons between our ED proposal and a two-
layer convolution for ResNet on CIFAR-10.

ResNet Baseline Our ED 2Conv

20 7.79 7.34 7.59
32 7.22 6.65 6.80
44 6.99 6.20 6.34
56 6.44 5.95 6.29

110 5.77 5.67 6.13

Table XVII: Comparisons between our ED proposal and a
two-layer convolution for ResNeXt-29 on CIFAR-10.

ResNeXt-29 Baseline Our ED 2Conv

Full transform 3.62 3.59 3.78
25% channels of 3 × 3 conv – 3.41 3.86
50% channels of 3 × 3 conv – 3.56 3.75
75% channels of 3 × 3 conv – 3.50 3.84

Wider ResNet 4.17 – –

D. More Ablation studies on CIFAR-10

1) Encoder-decoder vs. Two-layer convolutions: We com-
pare our method with the two-layer convolution baselines
on CIFAR-10 [25] to further justify the effectiveness of
our encoder-decoder proposal. The two-conv baselines are
implemented by simply replacing the encoder-decoder path
with a two-layer 3×3 convolution process which has the same
model complexity.

For ResNet series, as reported in Table XVI, both encoder-
decoder paths and two-layer convolution paths can boost the
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Table XVIII: Trade-off between accuracy and complexity with
and without grouped convolutions (] group = 16).

ResNet Baseline ED w/o group ED with group
error ] param error ] param error ] param

20 7.79 0.27M 6.78 0.56M 7.34 0.30M
32 7.22 0.46M 6.48 0.94M 6.65 0.51M
44 6.99 0.66M 5.99 1.34M 6.20 0.72M
56 6.44 0.85M 5.78 1.73M 5.95 0.92M

110 5.77 1.70M 5.51 3.40M 5.67 1.84M

performance of ResNets with different depth, but encoder-
decoder consistently performs better. For ResNeXt, we adopt
the ResNeXt-29 architecture used in [48] for fair comparison,
and vary the ratio of kept channels of 3×3 original transforma-
tion convolutional layers for more in-depth investigation. We
observe that the most lightweight version of ED-ResNeXt-29
achieves the best performance, while the two-layer convo-
lution shortcuts are inferior to the baseline ResNeXt-29 (cf.
Table XVII). These results also confirm the efficiency of our
encode-decoder architectures.

2) Impacts of grouped convolutions: Recent studies [21]
show that grouped convolutions can greatly reduce model and
computational complexity without obvious performance drop
in accuracy. We further investigate whether it happens for our
encoder-decoder proposal.

As shown in Table XVIII, both encoder-decoder counterparts
with and without grouped convolutions outperform the baseline
architectures. We observe that the grouped convolutions cause
a slight drop in accuracy compared to the ED version without
grouped convolutions, which justifies that our accuracy im-
provement mainly derives from the encoder-decoder structure
rather than grouped convolutions. On the other hand, since
grouped convolutions significantly reduce the computational
burden of encoder-decoder modules, we integrate them into all
encoder-decoder paths.

3) Dimensionality of encoder feature maps: We investigate
the effects of the reduced spatial dimensionality of ED on
the final classification performance. By changing the padding
numbers on the inputs and the stride size (fixing the convolution
kernel as 3× 3), we can get different reduction ratios of the
input feature map at the middle layer of ED. The results are
shown in Figure 5. It is clear to see that, when the reduction
ratio equals 50%, it achieves the best performance (the padding
number is 1, and the stride size is 2). Besides, we can also
observe that different reduction ratios will not affect the final
classification accuracy hardly. The fluctuation scope is less
than 0.35%, which demonstrates the robustness of our method.

4) Quantitative analyses of decoder activations: We perform
quantitative analyses about the responses of original input
features and decoder features. We threshold the deep responses
by 0 and compute the percentage of activated responses in the
feature map cells from the last block of 56-layer ED-ResNet.
Figure 6 shows the results obtained by 10,000 test images from
CIFAR. It clearly shows that the number of activated responses
becomes lower after our ED proposal (45.97%→20.37%),
which is a quantitative explanation about ED can produce
focused responses compared to input feature maps. Besides, as
illustrated in Figure 2, these focused responses tend to highlight
the discriminative regions of the inputs.
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Figure 5: Impact about the reduction ratios by ED.

Pe
rc

en
ta

ge
 o

f t
he

 w
ho

le
 re

sp
on

se
s (

%
)

0

10

20

30

40

50

60

70

80

90

100

Decoder Feature Maps
Input Feature Maps

79.63

54.03
45.97

20.37

Not Activated Activated

Figure 6: Distribution of the activated deep responses from
input feature and decoder feature maps.

VI. CONCLUSION

In this paper, we proposed a novel lightweight residual
learning path for deep neural networks, implemented by a
convolutional encoder-decoder module. It can be regarded
as an augmented path parallel with the existing identity
shortcuts and the original transformation branch. Thanks to the
abstract design and ability of the encoding stage, the decoder
part tends to both highlight the highly semantically relevant
deep activations and restrain the irrelevant or noisy deep
responses. By removing a portion of channels in the original
transformation branch, we can obtain a lightweight version of
ED-Nets, without causing obvious accuracy drop. Extensive
experiments on several large-scale datasets validated that our
proposal consistently benefits various residual architectures
on large-scale image classification, object detection, instance
segmentation and fine-grained recognition.
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