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Abstract—Multi-instance learning (MIL) has been widely ap-
plied to diverse applications involving complicated data objects
such as images and genes. However, most existing MIL algorithms
can only handle small- or moderate-sized data. In order to deal
with large scale MIL problems, we propose miVLAD and miFV,
two efficient and scalable MIL algorithms. They map the original
MIL bags into new vector representations using their correspond-
ing mapping functions. The new feature representations keep
essential bag-level information, and at the same time lead to
excellent MIL performances even when linear classifiers are used.
Thanks to the low computational cost in the mapping step and
the scalability of linear classifiers, miVLAD and miFV can handle
large scale MIL data efficiently and effectively. Experiments
show that miVLAD and miFV not only achieve comparable
accuracy rates with state-of-the-art MIL algorithms, but also
have hundreds of times faster speed. Moreover, we can regard
the new miVLAD and miFV representations as multi-view data,
which improves the accuracy rates in most cases. In addition,
our algorithms perform well even when they are used without
parameter tuning (i.e., adopting the default parameters), which
is convenient for practical MIL applications.

Index Terms—Multi-instance learning, Large scale data, Scal-
ability, Efficiency

I. INTRODUCTION

THe multi-instance learning (MIL) framework was pro-
posed during the investigation of drug activity predic-

tion [1], and was naturally applied to this problem. Different
from traditional single-instance learning, the input of MIL are
a set of bags that are labeled positive or negative, instead
of receiving a set of instances who have positive or negative
labels. In particular, the instances in MIL have no label
information associated with them. The MIL objective is to
train a classifier which can label new bags. Multi-instance
learning has been widely applied in various applications,
such as image categorization or retrieval, face detection, text
categorization, computer-aided medical diagnosis, etc. [2].

Over the past years, many effective MIL algorithms [3],
[4], [5], [6], [7], [8] have been developed to solve the diffi-
culty caused by the missing of instance labels. For example,
miSVM [3] is an SVM based method, which aims at explicitly
assigning labels to instances in bags by searching for the max-
margin hyperplanes to separate instances. The MIBoosting
method [5] assumes that every instance contributes indepen-
dently and equally to label of the bag which contains it,
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and proposes a boosting approach to solve the MIL problem.
miGraph [6] treats the instances as non-i.i.d. and maps a bag
to an undirected graph to solve MIL.

In the classic bag representation of MIL, an object is
represented as a set of instances, which can naturally encode
the original complex objects. This fact might partly explain
the success of existing MIL algorithms, which have achieved
decent accuracy rates in different MIL applications. However,
the bag representation is complicated, and directly processing
and classifying them means that MIL’s hypothesis space will
become much larger and more complex. This fact leads to an
undesired outcome: most MIL algorithms are usually time-
consuming and incapable of handling large scale problems.
In the real world, however, applications of MIL consistently
request scalable learning algorithms to handle millions of
complex objects or examples (e.g., images, genes, etc.)

In order to handle large scale MIL datasets, one natural
way is to convert the representation of an object from a bag
to a simpler one, i.e., a vector. The conversion should be very
efficient and it should keep as much information from the
bag as possible, in order to achieve an efficient, scalable and
accurate multi-instance learning machine. Along this line of
research, some methods have been proposed, including the
MILES algorithm [7] and the CCE method [9]. However, as
we will empirically show in this paper, neither the efficiency
nor the accuracy of these methods is mature enough to handle
large scale multi-instance learning datasets.

In this paper, we propose two efficient, scalable and accurate
MIL algorithms: miVLAD (MIL based on the VLAD repre-
sentation) and miFV (MIL based on the Fisher Vector repre-
sentation), respectively. In both methods, bags are mapped by
their corresponding mapping functions into new feature vector
representations. The major difference between miVLAD/miFV
and CCE/MILES is that the proposed methods encode more
information into the new vector representation. In addition,
they are efficient to compute, and both lead to excellent results
using linear classifiers.

Thanks to the low computational cost in the mapping step
and the scalability of linear classifiers, miVLAD and miFV
can handle large scale MIL problems efficiently. Our experi-
mental results show that on small-scale and medium-scale MIL
datasets, both proposed methods achieve comparable accuracy
with state-of-the-art MIL algorithms, e.g., MIBoosting [5]
and miGraph [6], and outperform other widely used MIL
algorithms, e.g., miSVM [3] and EM-DD [4]. It is worth
mentioning that miVLAD and miFV have hundreds of, or even
up to thousands of times faster speed than these compared MIL
algorithms. What’s more, on large scale problems the learning
of most existing MIL algorithms did not terminate after a
few days, while both miVLAD and miFV can finish training
within a few hours and achieve good classification accuracy.
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In addition, many problems in machine learning involve data
sets with multiple views where observations are represented by
multiple sources of features. Similarly, miVLAD and miFV
could provide different and complementary information for
MIL bags. As shown in our experiments, by treating the
new representations of miVLAD and miFV as multi-view
data [10], we can improve the classification performance on
most data sets. Meanwhile, our proposed algorithms are not
sensitive to their corresponding parameters. Even with the
default parameters, they can achieve satisfactory performances
too.

We organize the rest of this paper as follows. Related works
on MIL are introduced in Section II. The proposed miVLAD
and miFV algorithms are presented in Section III. We present
our experimental results in Section IV. In Section V, we
discuss the relationship between the two proposed algorithms,
and the relationship between several MIL algorithms and
miVLAD/miFV. Finally, discussions on future issues are pro-
vided in Section VI to conclude this paper. Preliminary studies
on miFV was published in [11].

II. RELATED WORK

During the past decade, many multi-instance learning al-
gorithms have been developed in the literature. Roughly
speaking, we can categorize MIL methods in the literature
based on their algorithmic styles, including at least density
based methods (Diverse Density [12] and EM-DD [4]), k-
nearest neighbor based methods (Citation-kNN and Bayesian-
kNN [8]), support vector machine based methods (miSVM
and MISVM [3]), ensemble based method (MIBoosting [5]),
converting MIL into single instance methods (MIWrapper [13]
and MILES [7]), distance based method (MIMEL [14]), dic-
tionary learning based method (GD-MIL [15]), kernel based
methods (miGraph [6] and MIKernels [16]) and so on [17],
[18], [19], [20], [21]. Existing MIL algorithms have achieved
satisfactory accuracy rates. However, most of them can only
handle small- or moderate-sized data, and only have limited
scalability. To the best of our knowledge, existing MIL algo-
rithms cannot deal with large scale MIL data efficiently.

In order to deal with MIL problems more efficiently, some
researchers had tried to solve MIL by using the similarity
that represents the closeness of the bag to specific target
points in the original instance space, e.g., DD-SVM [17] and
MILES [7]. Some had tried to treat MIL as a special case
of semi-supervised learning, e.g., MissSVM [19]. However,
due to the bag representation of MIL, the complexity of the
hypothesis space of existing MIL algorithms is still too large
to learn very efficiently. And, handling large scale MIL data
is not practical yet. For example, the MILES method took
1.2 minutes (i.e., 72 seconds) to learn on the Musk2 data set,
which is a small scale problem with only 102 bags [7].1

CCE (Constructive Clustering based Ensemble) is a more
efficient MIL algorithm [9]. This method could solve MIL
problems with lower computational complexity, because it uses
a vector representation that is based on constructive clustering.

1As a comparison, both proposed methods use less than 0.1 second on this
data set, cf. Section IV.

However, as will be discussed in detail in Section V-C, the
information CCE extracts from bags is very limited comparing
to miVLAD or miFV, which makes its accuracy significantly
worse than that of the proposed methods. Another disadvan-
tage of CCE is that it uses an ensemble of classifiers based
on multiple clustering results, in order to incorporate more
information from the bag representation. This step signifi-
cantly increases its computational complexity and renders it
incapable of handling large scale problems.

In addition, much progress of multi-view learning [10] has
been made recently, e.g., [22], [23], [24], [25], [26], [27], [28].
Moreover, the proposed MIL algorithms can provide comple-
mentary information of two different views for multi-instance
bags. By utilizing different information from miVLAD and
miFV as multi-view learning, it is not only efficient and
scalable, but also can achieve better classification performance
in most cases than single miVLAD/miFV, which is validated
in our experiments.

III. THE PROPOSED MIFV AND MIVLAD ALGORITHMS

In this paper, we propose two accurate, efficient and scal-
able multi-instance learning algorithms, named as miVLAD
and miFV. Both methods convert a bag into a vector very
efficiently, and keep useful information inside the bag.

The VLAD (Vector of Locally Aggregated Descriptors) rep-
resentation [29] and the FV (Fisher Vector) representation [30]
are two approaches in computer vision. Given an image and
a set of descriptors (vectors) extracted inside this image (e.g.,
SIFT), VLAD or FV encodes them into a high dimensional
vector, which is the new image-level signature. After that,
we feed these image-level representations into Support Vector
Machine (SVM), e.g., [31], [32], to train classifiers. Because
of their efficiency and effectiveness, they become state-of-the-
art approaches in computer vision and have shown excellent
performances in many applications. For example, the appli-
cations of FV in large scale image retrieval [33] and image
categorization [30], and the applications of VLAD in image
classification [29] and action recognition [34], all readily show
the efficiency, effectiveness and scalability of VLAD and FV.
Moreover, recently some studies have shown their effective-
ness and efficiency both theoretically and practically [30].

In the VLAD and FV representation of images, an image is
represented as a set of local patches. This set representation is
related to, but different from the bag representation in MIL. In
a bag in MIL, every instance has a label (although unknown
during the learning process), indicating whether it is a positive
or negative instance. In a set representation of an image,
however, the local patches do not have semantic meanings. For
example, in an image labeled as tall building, none of the local
patches extracted from it can be treated as a “tall building”.
Instead, they might be a window of a building, partial walls
of it, sky, part of a tree, etc. It is difficult to assign either
a positive or negative label to one image patch, even by a
human. Since both VLAD and FV map a set of items into
one single vector, we, however, may borrow ideas from them
to implement scalable multi-instance learning.

Before presenting the details of the proposed methods,
we first give a formal definition of multi-instance learning
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as the following. Let X denote the instance space. Given
a data set {(X1, y1), . . . , (Xi, yi), . . . , (XNB , yNB )}, where
Xi = {xi1, . . . ,xij , . . . ,xi,ni} is called a bag and yi 2
Y = {�1,+1} is the label of Xi, the goal is to generate a
classifier to classify unseen bags. Here xij 2 X is an instance
[xij1, . . . , xijl, . . . , xijd]

T , xijl is the value of xij at the l-th
attribute, NB is the number of training bags, ni is the number
of instances in the corresponding bag Xi, and d is the number
of attributes.

In addition, we denote NI =

PNB

i=1 ni as the total number
of instances in all bags, xi· as all the instances in the bag Xi,
and x·j as all instances from all bags, respectively. Note that,
in this paper, we treat multi-instance learning with the standard
assumption. A bag is labeled positive if it contains at least one
positive instance, otherwise it is labeled as a negative bag. Yet,
the labels of instances are unknown in both the training and
the testing data.

A. miVLAD

Now we describe the miVLAD (multi-instance learning
based on the VLAD representation) algorithm. Pseudo code
of the miVLAD algorithm is presented in Algorithm 1.

Algorithm 1 The miVLAD algorithm
1: Input:
2: Training data {(X1, y1), . . . , (XNB , yNB )}
3: Train:
4: Learn a codebook C = {c1, . . . , cK} based on the set

of all instances x·j , from all training bags
5: for i = 1 to NB do
6: Get the new feature vector via the mapping function

vi  Mv(Xi, C)
7: vi·l  sign(vi·l)

p|vi·l|
8: vi  vi/kvik2
9: end for

10: Use the new training set {(v1, y1), . . . , (vNB , yNB )} to
learn a classifier F

11: Test:
12: for all test bags Xi0 (i

0 2 {1, 2, . . . , N 0
B}) do

13: Get the new feature vector via the mapping function
vi0  Mv(Xi0 , C)

14: vi0·l  sign(vi0·l)
p|vi0·l|

15: vi0  vi0/kvi0k2
16: end for
17: Output the prediction F(vi0)

The first step is to gather all instances x·j from all training
bags. Then, we cluster x·j into K centroids, i.e., C =

{c1, . . . , ck, . . . , cK}, with the k-means clustering algorithm,
and C is called the codebook. Each instance xij is assigned
to its nearest centroid ck = NN(xij), where NN(x) is
the nearest neighbor of x in the codebook C. After that, as
presented in Algorithm 2, a mapping function Mv maps a
bag Xi into a feature vector vi based on the codebook C. For
each bag Xi, the mapping function is to accumulate the total
differences xi·� ck, where the instances xi· are from the bag
Xi and are assigned to ck. Then, for the K differences, the

function Mv concatenates them into a new feature vector vi

to represent the bag Xi.

Algorithm 2 Mapping function Mv in the miVLAD algorithm
1: Input:
2: Instances {xi1, . . . ,xij , . . . ,xi,ni} in a bag Xi

3: A pre-learned codebook C = {c1, . . . , ck, . . . , cK}
4: Output:
5: The feature vector vi which represents the bag Xi

6: Procedure:
7: for k = 1 to K do
8: Compute vik using equation (1)
9: end for

10: Concatenate all K components into one vector vi

Note that the dimensionality D of vi is D = K⇥d. Hence,
a component of vi can be expressed in the following form:

vikl =

X

xij2⌦

xijl � ckl , (1)

where ⌦ = {xij |NN(xij) = ck}. vikl represents the l-th
attribute of the k-th component of vi, xijl and ckl denote
the l-th attribute of the instance xij and of its corresponding
centroid ck, respectively. In the following, each element of vi

is sign square rooted by vi·l  sign(vi·l)
p|vi·l| [30]. Then,

the new feature vector vi is subsequently `2-normalized by
vi  vi/kvik2. Thus, the bags are turned into corresponding
feature vectors.

Finally, we feed (vi, yi) to a standard supervised learner,
e.g., a support vector machine, to learn a classification model
F . A bag Xi0 in the testing set will be firstly mapped into a
new feature vector vi0 by Mv . Then, we can get the bag-level
prediction via F(vi0).

B. miFV

We first give an introduction to the Fisher Kernel, and then
propose the miFV (multi-instance learning based on the Fisher
Vector representation) algorithm.

1) Basics of the Fisher Kernel: The Fisher Kernel (FV)
combines the strengths of generative and discriminative ap-
proaches to pattern classification [35].

Let S = {st, t = 1, . . . , T} be a sample of T observations
st 2 S . Let p be a probability density function which models
the generative process of elements in S with parameters �.
Then, the sample S can be described by the gradient vector

G

S
� = r� log p(S|�) . (2)

Intuitively, the gradient of the log-likelihood describes how
the parameters of the generative model p should be modified
to better fit the data S. Note that the dimensionality of G

S
�

only depends on the number of parameters in p, rather than
on the sample size T . In other words, it transforms sets with
different number of elements into fixed length vectors G

S
� ,

which is amenable for the mapping function Mf in the miFV
algorithm to map the bags with different numbers of instances
into a fixed-length feature vector.
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In [35], the Fisher Kernel (FK) was proposed to measure
the similarity between two samples S1 and S2:

KFK(S1, S2) = G

S1
�

0
F

�1
� G

S2
� , (3)

where F� is the Fisher information matrix of p:

F� = E

s⇠p[r� log p(s|�)r� log p(s|�)0] . (4)

Since F� is symmetric and positive definite, it has a
Cholesky decomposition F

�1
� = L�

0
L�. The FK in (3) can

be rewritten explicitly as a dot-product:

KFK(S1, S2) = f

S1
�

0
f

S2
� , (5)

where
f

S
� = L�G

S
� = L�r� log p(S|�) . (6)

The normalized gradient vector presented in (6) is the Fisher
Vector (FV). In consequence, using a non-linear kernel ma-
chine with the KFK kernel is equivalent to using a linear
kernel machine with the FV (i.e., fS

� ) as feature vectors.
2) Representing Bags with Fisher Vectors: Here we treat

a bag Xi as a sample S mentioned above. Recalling that,
in the traditional MIL assumption, the instances in bags are
independently and identically distributed. In the same way,
the st’s from S are generated independently by p. Thus, a
natural choice of p is a Gaussian Mixture Model (GMM) as
one can approximate with arbitrary precision any continuous
distribution with a GMM. We can estimate the parameters of
the GMM p on the training bags using Maximum Likelihood
Estimation (MLE). Pseudo code of the miFV algorithm is
shown in Algorithm 4.

We denote the parameters of the K-component GMM by
� = {!k,µk,⌃k, k = 1, . . . ,K}, where !k, µk and ⌃k are
respectively the mixture weight, mean vector and covariance
matrix of the k-th Gaussian. In what follows, for a bag
Xi = {xi1, . . . ,xij , . . . ,xi,ni}, let L(Xi|�) = log p(Xi|�).
Because of the independence assumption, we can rewrite this
equation as follows:

L(Xi|�) =
niX

j=1

log p(xij |�) , (7)

and the GMM can be presented as:

p(xij |�) =
KX

k=1

!kpk(xij |�) , (8)

where the component pk denotes the k-th Gaussian:

pk(xij |�) =
exp{� 1

2 (xij � µk)
0⌃�1

k (xij � µk)}
(2⇡)

D/2|⌃k|1/2
. (9)

The mixture weights are subject to the constraint:

KX

k=1

!k = 1, 8 k : !k � 0 , (10)

to ensure that p(xij |�) is a valid distribution. The covariance
matrices are assumed to be diagonal and the diagonal entries
form a vector �2

k [36].

Now, we will show in the miFV algorithm how the mapping
function Mf maps a bag into a vector, which is shown as
the pseudo code in Algorithm 3. The gradients of a single
instance xij w.r.t. the parameters of the GMM model, � =

{!k,µk,⌃k, k = 1, . . . ,K}, can be presented as

r!k log p(xij |�) = �j(k)� !k , (11)

r
µk log p(xij |�) = �j(k)

✓
xij � µk

�

2
k

◆
, (12)

r
�k log p(xij |�) = �j(k)


(xij � µk)

2

�

3
k

� 1

�k

�
, (13)

where �j(k) is the soft assignment of xij to Gaussian k,
which is also the probability of xij to be generated by the
k-th Gaussian:

�j(k) = p(k|xij ,�) =
!kpk(xij |�)PK
t=1 !tpt(xij |�)

. (14)

Note that, the division and exponentiation of vectors should be
understood as term-by-term operations in the above equations.

Algorithm 3 Mapping function Mf in the miFV algorithm
1: Input:
2: Instances {xi1, . . . ,xij , . . . ,xi,ni} in a bag Xi

3: GMM parameters � = {!k,µk,⌃k, k = 1, . . . ,K}
4: Output:
5: The FV f

Xi
� which describes the bag Xi

6: Procedure:
7: for j = 1 to ni do
8: Compute �j(k) using equation (14)
9: end for

10: for k = 1 to K do
11: Compute f

Xi
!k

using equation (15)
12: Compute f

Xi
µk

using equation (16)
13: Compute f

Xi
�k

using equation (17)
14: end for
15: Concatenate all FV components into one vector fXi

�

After obtaining the gradients, the next step is to compute
L�. The methods in [36] and [30] supply us a closed form
of L�, which can also be solved efficiently. The normalized
gradients are [36] [30]:

f

Xi
!k

=

1p
!k

niX

j=1

(�j(k)� !k) , (15)

f

Xi
µk

=

1p
!k

niX

j=1

�j(k)

✓
xij � µk

�k

◆
, (16)

f

Xi
�k

=

1p
!k

niX

j=1

�j(k)
1p
2


(xij � µk)

2

�

2
k

� 1

�
. (17)

Recall that the dimension of the instances in bag Xi is d. It is
easy to see that fXi

!k
in (15) is a scalar, while f

Xi
µk

and f

Xi
�k

are
d-dimensional vectors. Thus, the FV f

Xi
� which can describe

a bag Xi should be concatenated by f

Xi
!k

, fXi
µk

and f

Xi
�k

, for all
k = 1, . . . ,K Gaussian components. Then, fXi

� is normalized
by the square-root and L2-normalization which is similar to
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that in miVLAD. Finally, the mapping function Mf maps the
bag Xi into a (2d+1)K-dimensional normalized FV, i.e., fXi

� .
The rest training and testing procedures are similar to those

in miVLAD, as detailed in Line 12-16 in Algorithm 4.

Algorithm 4 The miFV algorithm
1: Input:
2: Training data {(X1, y1), . . . , (XNB , yNB )}
3: Train:
4: Estimate the parameters � = {!k,µk,⌃k} of the GMM

p on the training bags with MLE
5: for i = 1 to NB do
6: Map the bag Xi into a FV f

Xi
�  Mf (Xi, p)

7: [f

Xi
� ]j  sign([f

Xi
� ]j)

q
|[fXi

� ]j |
8: f

Xi
�  f

Xi
� /kfXi

� k2
9: end for

10: Use the new training set {(fX1
� , y1), . . . , (f

XNB
� , yNB )}

to learn a classifier F
11: Test:
12: for all test bags Xi0 (i

0 2 {1, 2, . . . , N 0
B}) do

13: Map the bag Xi0 into a FV f

Xi0
�  Mf (Xi0 , p)

14: [f

Xi0
� ]j  sign([f

Xi0
� ]j)

q
|[fXi0

� ]j |
15: f

Xi0
�  f

Xi0
� /kfXi0

� k2
16: end for
17: Output the prediction F(f

Xi0
� )

C. Efficiency and Scalability of miVLAD and miFV

As aforementioned, FV is efficient to compute. In addition,
we do not need to use costly nonlinear kernels to map
these very high-dimensional gradient vectors implicitly into
a still higher dimensional space [36], [30]. Hence, it leads
to excellent accuracy rates even with linear classifiers. Thus,
miFV is efficient to compute. Even for problems with huge
number of instances and feature dimensions, linear SVM and
SGD (stochastic gradient descent) methods can solve them
very efficiently. In consequence, both miVLAD and miFV
can easily handle large scale MIL problems, e.g., the video
annotation task which is shown in our experiments.

For miVLAD, because the VLAD representation can be
viewed as a simplification of the FV representation [29],
miVLAD is even more efficient than miFV. In addition, we
can directly concatenate the VLAD and FV representation of
a bag to form a new representation. This new representation
can be viewed as formed by two channels, i.e., VLAD and FV,
which can be treated as multi-view data [10]. The rest training
and testing procedures are similar to those in miVLAD/miFV.
We denote this method as miV&F. Because VLAD and FV
are both efficient to obtain, miV&F is also very efficient and
scalable. Meanwhile it can achieve better accuracy rates in
most cases than miVLAD/miFV.

Regarding the computational cost of the proposed methods,
it is dominated by two parts: one part is building the codebook
C, and the other part is the mapping process, i.e., Mv or Mf .
For the first one, the typical cost to cluster NI instances in
training bags into K centroids C is O(NI⇥K⇥d⇥n), where n

is the number of iterations for k-means in miVLAD or GMM
in miFV. After that, the second part will map each bag into
a new representation. As detailed in Algorithm 1 and 4, for
every bag Xi, we compute the distance from every instance
in Xi to every centroid in the codebook, which is the same as
computing the distance from each instance in training bags to
each centroid in C. Therefore, the cost of that is O(NI⇥K⇥d).
In short, the computational cost of the proposed algorithms is
O((n + 1) ⇥ NI ⇥K ⇥ d) for training (excluding the SVM
learning cost). However, because it is difficult to make formal
complexity analysis of other MIL algorithms, we empirically
validate the efficiency and scalability of our proposed methods
in the experiments part.

D. Practical Issues

Principal component analysis (PCA) is a preprocessing tech-
nique that uses orthogonal projections to convert a long vector
into a shorter one, whose components are linearly uncorrelated
with each other. PCA is useful in reducing computational
complexities induced by the long vector representations, and
sometimes can increase the system accuracy by removing
noise contained in the original vectors. In practice, before
using the mapping functions in miVLAD and miFV, we can
run PCA to reduce noise within the original instances in bags,
or reduce their dimensionality. Similarly, PCA is also essential
for the success of VLAD and Fisher Vector in practical
applications [30].

Hence, there are only two parameters in miVLAD and
miFV, i.e., the number of centers and the PCA energy. The
number of centers represents the number of centroids in
miVLAD and the number of Gaussian components in miFV,
respectively. The PCA energy parameter reflects how much
information is left after using PCA. For example, when PCA
energy is 1.0, that means we do not use PCA; when PCA
energy is 0.9, that means the remaining feature can reconstruct
the original one with 90% variations retained. The results of
parameter analysis will be shown in the experiments section,
which illustrates that miVLAD and miFV can achieve satisfac-
tory results on different data sets even with the corresponding
default parameters.

IV. EXPERIMENTS

In this section, we first describe the experimental setup
and the data sets used in our experiments. Then we present
the experimental results mainly in four aspects, i.e., accuracy
comparison, efficiency comparison, scalability and parameter
analysis.

A. Data Sets and Experimental Setup

Experiments are performed on five MIL benchmark data
sets, four moderate-sized data sets for image classification
and document classification, and finally three large scale data
sets for the audio classification task, the text categorization
task and the video annotation task. On these data sets, we
compare the proposed miVLAD and miFV algorithms with six
state-of-the-art MIL algorithms: MIWrapper [13], CCE [9],
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Table I
COREL IMAGES.

ID Category Name ID Category Name
1 African people and villages 11 Dogs
2 Beach 12 Lizards
3 Historical building 13 Fashion models
4 Buses 14 Sunset scenes
5 Dinosaurs 15 Cars
6 Elephants 16 Waterfalls
7 Flowers 17 Antique furniture
8 Horses 18 Battle ships
9 Mountains and glaciers 19 Skiing
10 Food 20 Deserts

EM-DD [4], miSVM [3], MIBoosting [5] and miGraph [6].
Empirical results of miV&F are also reported. For miVLAD,
miFV and miV&F, we take LIBLINEAR [31] as the final
linear classifier presented in Line 10 in Algorithm 1 and
Algorithm 4 for the first two methods, respectively. In addition,
the Simple-MI method is also a baseline method [2], which
stands for representing one bag with the mean vector of all
the instances in that bag, and associating the mean vector with
bag-level label to build a classifier.

We first evaluate the proposed methods on five benchmark
data sets popularly used in the studies of MIL, including
Musk1, Musk2, Elephant, Fox and Tiger. In addition, two
famous categories, i.e., Course and Faculty, in WebKB which
is a benchmark data set for document classification are used in
experiments.2 One webpage from one of these two categories
is taken as a positive bag, and different fixed-length paragraphs
are treated as instances. The same number of the negative bags
are randomly sampled from the remaining six categories in
WebKB. More details of these data sets can be found in [37].
On each of the seven data sets, we run ten times 10-fold cross
validation and report the average results.

Because image categorization is one of the most successful
applications of MIL [38], [39], two image data sets (1000-
Image and 2000-Image) for classification are also used in our
experiments. These two data sets contain 10 and 20 categories
from COREL images, respectively.3 Images are in the JPEG
format of 384 ⇥ 256 or 256 ⇥ 384 image resolution. The
category names are listed in Table I along with the identifiers
for these 20 categories. We treat each image as a bag and
employ the SBN bag generator [40] with the default patch size
(2⇥ 2) to extract instances/patches from each bag/image. For
the 1000-Image and 2000-Image data sets, we use the same
experimental routine as described in [6]. The experiment is
repeated five times with different training/test data splittings,
and the average results are reported.

Finally, we use three large scale data sets, i.e., Speaker,
Process, and TRECVID 2005, to evaluate the scalability of
the proposed methods. The Speaker data set [2] was created
by Amores based on an audio database. In this case, the task
is to identify the gender of the speaker, using as input an
audio recording of a sentence spoken by the person. The audio
recording is represented as a bag of feature vectors, using a
standard representation in the audio processing community.

2http://www.cs.cmu.edu/⇠webkb/
3http://www.cs.olemiss.edu/⇠ychen/ddsvm.html

Table II
DETAILED CHARACTERISTICS OF THE DATA SETS. NOTE THAT, BECAUSE

WE USE THE ONE-AGAINST-ONE STRATEGY FOR THE 1000-Image AND
2000-Image DATA SETS, “] POSITIVE” (“] NEGATIVE”) FOR THEM

PRESENTS THE NUMBER OF POSITIVE (NEGATIVE) BAGS USED IN EACH
ROUND. FOR TRECVID 2005, BECAUSE IT CONTAINS 39 SUB-DATASETS,

WE MERELY PRESENT THE TOTAL NUMBER OF BAGS IN IT.

Data set ] attribute ] bag
] instancepositive negative total

Musk1 166 47 45 92 476
Musk2 166 39 63 102 6,598
Elephant 230 100 100 200 1,220
Fox 230 100 100 200 1,320
Tiger 230 100 100 200 1,391
Course 320 674 674 1,348 3,528
Faculty 361 795 795 1,590 4,248
1000-Image 121 100 100 1,000 3,000
2000-Image 121 100 100 2,000 3,000
Speaker 20 190 240 430 583,600
Process 200 757 10,961 11,718 118,417
TRECVID 1,000 – – 61,901 680,911

The large scale text categorization data set, i.e., Pro-
cess [41], was obtained as part of Task 2 of the BioCreative
Text Mining Challenge. Given a name of a human protein and
a full-text journal article, the task is to determine whether
this protein-article pair can be annotated with a particular
gene ontology (GO) term. For the MIL setting, each article
is represented as a bag. An instance in a bag refers to a
paragraph in an article. Each paragraph is described by a set
of word count features, along with a set of numerical features
that capture some aspects of the protein-GO code interaction.

The third and last large scale data set is the development
(DEV) set of TRECVID 2005 for the video annotation task.
The original data set consists of 80 hours of TV news videos
from 13 different programs in English, Arabic and Chinese,
and contains 43,907 shots. Some shots have been segmented
further into sub-shots. The final DEV set contains 61,901 sub-
shots.4 For each sub-shot, the keyframes have been extracted
to represent the sub-shot, and each of them has been associated
with one or more concepts in the 39 concept set [42]. In
this case, we treat each sub-shot as a bag and each frame
in one sub-shot as an instance. Each bag/sub-shot obtains 11
instances/keyframes of 1,000-dimension.

These large scale multiple instance data sets are character-
ized by different numbers of features ranging from 20 to 1,000,
and different numbers of instances ranging from 118,417 to
680,911. The Speaker data set has a small number of bags,
but a large number of instances. Process has a large number of
bags with a small number of instances. Moreover, TRECVID
2005 has both large numbers of bags and instances. Especially,
please note that the numbers of instances per bag are 1,357, 10
and 11 for Speaker, Process and TRECVID 2005, respectively,
which will lead to interesting observations in Section IV-E.
Detailed characteristics of these 12 data sets are summarized
in Table II.

4http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.6497
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B. Accuracy Comparison

We first report the comparison results on the nine MIL
data sets (i.e., all data sets except for the three large scale
ones) in Table III. Note that, because the number of positive
bags is equal to the one of the negative bags in these data
sets, the impact of class imbalance can be ignored. So in
the experiments of these nine data sets, we use accuracy
as the evaluation criterion. As shown in the table, miV&F
achieves three times the best performance and three times
the second best performance in all the nine cases. miFV
gets four times the second best performance. miVLAD has
comparable performances with miFV, and especially on two
document classification data sets, its performances are ideal
and satisfactory. In addition, we also compare miVLAD def,
miFV def and miV&F def with miVLAD, miFV and miV&F,
respectively. miVLAD def (miFV def or miV&F def) indi-
cates miVLAD (miFV or miV&F) runs with its corresponding
default parameters. The parameter analysis of the proposed
algorithms can be found in Section IV-E.

When comparing different algorithms on several datasets,
the Friedman test [43] can be used to compare their overall
performance. As shown in Figure 1, the average rank of miFV,
miV&F and miVLAD on these data sets are 1st, 2nd and
4th, respectively. Note that, although miV&F achieves not
only the best performance but the second best one in six
data sets of the nine, the performance of other cases is not
satisfactory enough, which pulls down its overall average rank.
Moreover, miFV performs significantly better than Simple-
MI, MIWrapper, CCE, EM-DD and miSVM. Meanwhile, it
can achieve comparable performances with two state-of-the-
art MIL algorithms, i.e., MIBoosting and miGraph. In addition,
miVLAD also performs well although its average performance
is slightly lower than that of miGraph.

C. Efficiency Comparison

Because our goal is to handle large scale MIL problems, it
is crucial to study the efficiency of the proposed algorithms.
We report the time cost of training time and test time in
Figure 2 and Figure 3, respectively. The time costs of training
and testing include both the processes of transforming features
and training linear classifiers. Note that in these figures the
vertical axes are shown in log-scale. All the experiments are
performed on a machine with a 3.10 GHz CPUs and 16GB
main memory.

Obviously, except for Simple-MI, miVLAD and miFV are
the most efficient ones on all the data sets. EM-DD is the
most time-consuming one, followed by miSVM. For CCE,
because it trains an ensemble of classifiers based on multiple
clusterings, it is not efficient enough and even worse than
EM-DD and miGraph on the four moderate-sized data sets.
Compared with the accuracy-wise comparable algorithms, i.e.,
MIBoosting and miGraph, the proposed algorithms have hun-
dreds of times faster speed. Especially for the four moderate-
sized data sets, i.e., Course, Faculty, 1000-Image and 2000-
Image, the efficiency of the proposed algorithms is more
prominent than other state-of-the-art MIL algorithms.

0 2 4 6 8 10

miV&F

miFV

miVLAD

miGraph

MIBoosting

miSVM

EM−DD

CCE

MIWrapper

Simple−MI

Rank

Figure 1. Friedman test results for comparing the proposed methods with
other MIL algorithms on nine MIL data sets. The vertical axis indicates the
MIL algorithms, and the horizontal axis indicates the rank values. The circle is
the average rank for each algorithm and the bar indicates the critical values for
a two-tailed test at 95% significance level. When two algorithms having non-
overlapping bars, it indicates that they are significantly different. Significantly
worse results are presented in dotted bars (colored in red) located on the right-
hand-side of the diagram. The best results are presented in solid bars (colored
in blue) on the leftmost side in the diagram.

D. Scalability

Now we present the results of the proposed algorithms
on the three large scale data set, i.e., Speaker, Process, and
TRECVID 2005. For the Process data set, we split the data
set into three parts, i.e., training data, validation data and test
data. Because this data set has different numbers of positive
and negative bags, the training part has 400 positive and 400
negative bags, the validation part has 157 positive and 157
negative ones, and the test part contains 200 positive and
10,404 negative ones. For verifying the effectiveness of our
proposed algorithms on the unbalanced testing data set, we
employ F1-score as the criterion:

F1 = 2 · PR

P +R

, (18)

where P and R are the precision and recall on the testing
data set, respectively. We do the experiments on Process for
five times with different data splittings, and report the average
F1-score on the test part in Figure 4. The classification perfor-
mance is consistent with the small-sized MIL data sets. The
proposed algorithm (miVLAD, miFV, and miV&F) achieves
top F1-score.

We perform similar splitting process to the Speaker and
TRECVID 2005 data sets. The training part of Speaker has
120 positive and 120 negative bags, and the validation part
has 30 positive and 30 negative ones, and the test part has 40
positive and 90 negative ones. The F1-score on the test part
of Speaker is reported in Figure 5.

For TRECVID 2005, these three parts have 40,616, 9,331
and 11,954 bags, respectively. For each concept of the data
set, if we treat it as the positive label, then the other concepts
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Table III
COMPARISON RESULTS (MEAN±STD.) ON 9 DATA SETS. THE HIGHEST AVERAGE ACCURACY OF EACH COLUMN IS MARKED IN BOLD AND WITH •; THE
SECOND HIGHEST ONE OF EACH COLUMN IS JUST IN BOLD. NOTE THAT MIVLAD DEF (MIFV DEF OR MIV&F DEF) INDICATES THE MIVLAD (MIFV

OR MIV&F) ALGORITHM RUNS WITH ITS CORRESPONDING DEFAULT PARAMETERS.

Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image
Simple-MI .832±.123 .853±.111 .801±.088 .546±.092 .778±.092 .896±.007 .910±.008 .844±.090 .818±.099
MIWrapper .849±.106 .796±.106 .827±.088 .582±.102 .770±.092 .929±.009 .906±.004 .847±.086 .831±.092
CCE .831±.027 .713±.024 .793±.021 .599±.027 .760±.012 .936±.006 .934±.006 .805±.102 .801±.095
EM-DD .849±.098 .869±.108 .771±.098 .609±.101 .730±.096 .538±.120 .410±.008 .741±.145 .739±.139
miSVM .874±.120 .836±.088 .822±.073 .582±.102 .789±.089 .915±.010 .915±.014 .854±.148 .849±.139
MIBoosting .837±.120 .790±.088 .827±.073 .638±.102 • .784±.089 .938±.019 .941±.017 .910±.060 • .898±.063 •
miGraph .889±.073 .903±.086 • .869±.078 .616±.079 .801±.083 .980±.001 • .854±.006 .896±.070 .896±.072
miVLAD .871±.097 .872±.095 .850±.080 .620±.098 .811±.087 .971±.015 .969±.007 • .878±.081 .868±.079
miFV .909±.089 .884±.094 .852±.081 .621±.109 .813±.083 .968±.009 .961±.007 .899±.070 .882±.070
miV&F .915±.083 • .881±.087 .871±.073 • .620±.096 .823±.084 • .976±.007 .965±.007 .901±.079 .879±.075
miVLAD def .865±.111 .872±.095 .844±.085 .587±.096 .795±.092 .955±.028 .928±.022 .878±.081 .868±.079
miFV def .875±.106 .861±.106 .852±.081 .560±.099 .789±.091 .943±.008 .930±.010 .879±.075 .875±.072
miV&F def .898±.089 .877±.102 .868±.071 .573±.108 .789±.094 .960±.004 .949±.007 .879±.078 .876±.083

Figure 2. Comparison of mean time cost of training time on nine data sets. Note that for the first seven data sets, these results are the average time cost of
ten times 10-fold cross validation. For the latter two image data sets, they are the average time cost of the rounds for one-against-one strategy. The vertical
axes are shown in log-scale. This figure is best viewed in color.

<0.001 <0.001 <0.001 <0.001 <0.001
<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001

<0.001<0.001<0.001<0.001

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001<0.001<0.001

<0.001

Figure 3. Comparison of mean time cost of test time on nine data sets. Note that for the first seven data sets, these results are the average time cost of ten
times 10-fold cross validation. For the latter two image data sets, they are the average time cost of the rounds for one-against-one strategy. The vertical axes
are shown in log-scale. “<0.001” indicates the time cost is less than 0.001 second. This figure is best viewed in color.
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Figure 4. Classification results of the Process data set. The black block
represents the average F1-score for each MIL algorithm, and the vertical bar
is the standard deviation.

become the negative ones. Thus, we can get 39 MIL data
sets, which are sub-problems of the original data set. Note
that, due to the class imbalance phenomenon, for each sub-
dataset/concept, we build a binary classifier five times with
five random balanced under-samplings to solve this problem.
Because this data set contains 39 sub-datasets, we evaluate
the general performances of the compared approaches on two
commonly used criteria: micro-averaged F-score (mi.f.), and
macro-averaged F-score (ma.f.), which is shown as follows:

micro-averaged F-score = 2 · PallRall

Pall +Rall
, (19)

macro-averaged F-score =

PM
i=1 Fi

M

, (20)

where M indicates the number of classes. In micro-averaged
F-score, it is computed globally over all category predic-
tions, and Pall and Rall are obtained by summing over
all individual predictions. While macro-averaged F-score is
computed locally over each category first and then the average
over all categories is taken. Fi = 2PiRi/ (Pi +Ri) is the
corresponding F-score of the i-th class.

However, due to their high computational complexity, the
other five MIL algorithms, i.e., CCE, EM-DD, miSVM, MI-
Boosting and miGraph, could not return results of these two
large scale data sets in 48 hours. We sample different ratio
of the original training data ranging from 10% to 100% for
all the MIL algorithms. The results of Speaker is shown
in Figure 5, and the TRECVID 2005’s results of mi.f. and
ma.f. are presented in Figure 6 and Figure 7, respectively. As
shown in these figures, the results of CCE, EM-DD, miSVM,
MIBoosting and miGraph are not complete. That is because
these complex MIL algorithms can not return results in 48h,
even for a small sampling of the original training data. In
contrast, our proposed algorithms can return results in less
than 0.5 hour for Speaker and several hours for TRECVID
2005 when we use the whole training data.

The curves of the proposed algorithms (miF&V, miFV and
miVLAD) clearly are on top of other curves. In other words,
when the sampling ratio is small and results for other data
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Figure 5. Classification results of the Speaker data set. Note that, when the
ratio of training data is bigger than 50%, EM-DD could not return results in
48 hours. And CCE, miSVM, MIBoosting and miGraph return no results in
48h when the ratio is bigger than 60%. This figure is best viewed in color.
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Figure 6. Micro-averaged F-score results of TRECVID 2005. Note that,
when the ratio of training data is bigger than 20%, CCE, EM-DD, miSVM,
MIBoosting and miGraph can not return results in 48 hours. This figure is
best viewed in color.

sets are available, the proposed algorithms still exhibits clear
advantages in terms of various accuracy evaluation metrics.

E. Parameter Analysis

As aforementioned, for miVLAD and miFV, the two most
important parameters are the number of centers and the PCA
energy. Note that, the parameters of LIBLINEAR is fixed
when we change the value of parameters in both miVLAD
and miFV. In this section, we first report the results of the
proposed algorithms with different parameter values on small-
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Figure 7. Macro-averaged F-score results of TRECVID 2005. Note that,
when the ratio of training data is bigger than 20%, CCE, EM-DD, miSVM,
MIBoosting and miGraph can not return results in 48 hours. This figure is
best viewed in color.

and moderate-sized data sets. Then, we perform the parameter
analysis on two large scale ones, i.e., Speaker and Process.

1) Results of Small- and Moderate-sized Data Sets: The
parameter analysis results of the proposed algorithms on the
nine small- and moderate-sized data sets are presented in
Table IV and Table V, respectively. We first fix the value of
PCA energy to 1.0 (that is, not using PCA). As shown in
Table IV, miVLAD can achieve the best performance in most
cases when the number of centroids is 2. For the two image
data sets, miVLAD achieves the best performance when we do
not use PCA. However it can get the best performance when
PCA is used on the two document classification data sets. That
may be related to the noises in the document data sets, which
can be overcome by using PCA to get better performance. But,
miVLAD can achieve the best performance in most cases when
PCA is not used. In addition, similar phenomena also exist in
miFV. In consequence, we take the number of centroids of 2

and PCA energy of 1.0 as the default parameters in miVLAD;
and the number of Gaussian components of 1 and PCA energy
of 1.0 as the default parameters in miFV, respectively. In
addition, the default parameters in miV&F is the same as the
corresponding ones in miVLAD and miFV.

As shown in Table III, the performances of the proposed
algorithms with default parameters are comparable with the
ones with the well tuned parameters. That illustrates another
advantage of the proposed algorithms: it is convenient to
employ miVLAD or miFV. Even with the default parameters,
it can also achieve a satisfactory result efficiently.

2) Results of Large Scale Data Sets: Now we do the
parameter analysis experiments on the Speaker and Process
data set. In the former results of parameter analysis, we can
find that the optimum parameters of numbers of centers is 1
or 2 for miVLAD or miFV, respectively. However, during the
experiments on Speaker, we find that when we set the numbers

Table VI
PARAMETER ANALYSIS RESULTS OF MIVLAD AND MIFV ON THE

SPEAKER DATA SET. THE HIGHEST F1-SCORE OF EACH ROW IS MARKED
IN BOLD. NOTE THAT PCA IS NOT USED IN THESE EXPERIMENTS.

] of centers 2 20 64 128 256 512
miVLAD 0.702 0.769 0.798 0.833 0.897 0.887

miFV 0.714 0.760 0.813 0.899 0.952 0.913

Table VII
PARAMETER ANALYSIS RESULTS OF MIVLAD AND MIFV ON THE

PROCESS DATA SET. THE HIGHEST F1-SCORE OF EACH ROW IS MARKED
IN BOLD. NOTE THAT IN THESE EXPERIMENTS, PCA ENERGY IS FIXED ON

THE VALUE OF 0.9.

] of centers 1 2 3 4 5 6
miVLAD 0.270 0.334 0.320 0.313 0.305 0.300

miFV 0.259 0.337 0.325 0.316 0.314 0.282

of centers as 1 or 2 for the proposed methods, the F1-score is
not satisfactory. Thus, we change the numbers of centers into a
bigger one, e.g., 64 or 128. As a consequence, we find that the
F1-score gets a significant improvement. But the Process data
set has similar results of those small- and moderate-sized data
sets. The parameter analysis results of these two large scale
data sets is reported in Table VI and Table VII, respectively.

As shown in these tables, the proposed algorithms achieve
the best performance on the Speaker data set when the number
of centers is 256, while the optimal number is 2 on the
Process data set. We can explain this difference by the average
number of instances per bag. Recall that these two large scale
data sets have significant different numbers of instances per
bag. On average the bags in Speaker has 1357.2 instances,
while the number is only 10.1 for Process. Hence, we reach
the conclusion that: when each bag in a data set contains a
large number of instances, e.g., thousands of instances, it is
better to use a big number of centers (e.g., 128 or 256) for
miVLAD/miFV; when the number of instances in each bag is
small, a small number of centers (e.g., 1 or 2) is better. This
observation is consistent with the performances of VLAD and
FV in the computer vision tasks, in which there are thousands
or tens of thousands of local descriptors in one image, and the
number of centers are usually 64, 128 or 256.

V. DISCUSSIONS

In this section, we discuss the relationship between Simple-
MI, CCE and the proposed algorithms.

A. Relationship between miVLAD and miFV

We first discuss the relationship between the two proposed
algorithms. For miFV, it first approximates the distribution of
instances in bags with a GMM, which can be treated as a soft
assignment method for instances. After that, different higher-
order statistics shown in equations (15)-(17) are computed
to represent the original bag. For miVLAD, the mapping
function Mv consists of assigning each instance xij in bag
Xi to its closest centroid ck and accumulating the differences
xij � ck. Hence, miVLAD is a simplified version of miFV
under the following approximations: 1) the soft assignment is
replaced by a hard assignment and 2) only the gradient with
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Table IV
PARAMETER ANALYSIS RESULTS (MEAN±STD.) OF MIVLAD ON 9 DATA SETS. THE HIGHEST AVERAGE ACCURACY OF EACH COLUMN IS MARKED IN

BOLD. NOTE THAT WHEN THE NUMBER OF CENTROIDS IS TUNED FROM 1 TO 6, THE PCA ENERGY IS FIXED ON THE VALUE OF 1.0, AND WHEN THE PCA
ENERGY IS TUNED, THE NUMBER OF CENTROIDS IS FIXED ON THE VALUE OF 2.

] of centers
Data set Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image

1 .836±.106 .857±.106 .829±.091 .589±.105 .809±.088 .968±.005 .961±.009 .869±.079 .854±.081
2 .865±.111 .872±.095 .844±.085 .611±.092 .795±.092 .955±.028 .928±.022 .878±.081 .868±.079
3 .849±.110 .871±.098 .825±.097 .585±.103 .788±.091 .921±.026 .918±.023 .871±.079 .863±.077
4 .831±.099 .865±.098 .818±.097 .579±.103 .781±.097 .925±.028 .928±.020 .866±.081 .854±.078
5 .813±.107 .854±.107 .813±.097 .578±.108 .767±.097 .923±.032 .923±.023 .862±.083 .854±.081
6 .812±.112 .853±.105 .812±.091 .576±.105 .756±.099 .923±.038 .927±.018 .862±.086 .857±.079

PCA energy
Data set Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image

1.0 .865±.111 .872±.095 .844±.085 .611±.092 .795±.092 .955±.028 .928±.022 .878±.081 .868±.079
0.9 .861±.094 .853±.118 .829±.092 .620±.098 .811±.084 .971±.015 .942±.021 .822±.114 .812±.102
0.8 .766±.117 .748±.126 .848±.080 .610±.108 .811±.087 .942±.028 .949±.018 .772±.104 .771±.104

Table V
PARAMETER ANALYSIS RESULTS (MEAN±STD.) OF MIFV ON 9 DATA SETS. THE HIGHEST AVERAGE ACCURACY OF EACH COLUMN IS MARKED IN BOLD.

NOTE THAT WHEN THE NUMBER OF GAUSSIAN COMPONENTS IS TUNED FROM 1 TO 6, THE PCA ENERGY IS FIXED ON THE VALUE OF 1.0, AND WHEN
THE PCA ENERGY IS TUNED, THE NUMBER OF CENTROIDS IS FIXED ON THE VALUE OF 2.

] of centers
Data set Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image

1 .875±.106 .861±.106 .852±.081 .560±.099 .789±.091 .943±.008 .930±.010 .879±.075 .875±.072
2 .909±.089 .864±.096 .829±.091 .542±.096 .765±.097 .932±.008 .923±.013 .899±.070 .882±.070
3 .888±.098 .844±.123 .806±.093 .538±.128 .712±.107 .932±.009 .919±.009 .881±.070 .879±.073
4 .889±.897 .835±.113 .781±.096 .554±.113 .708±.115 .932±.008 .921±.016 .882±.068 .877±.073
5 .864±.104 .831±.131 .764±.109 .531±.122 .686±.107 .930±.006 .922±.012 .881±.073 .878±.070
6 .836±.121 .827±.118 .754±.094 .539±.112 .686±.108 .930±.007 .923±.014 .880±.074 .878±.072

PCA energy
Data set Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image

1.0 .909±.089 .864±.096 .829±.091 .542±.096 .765±.097 .932±.008 .923±.013 .899±.070 .882±.070
0.9 .840±.116 .843±.116 .851±.079 .595±.103 .795±.084 .968±.009 .960±.008 .836±.107 .833±.097
0.8 .763±.117 .752±.126 .836±.087 .621±.109 .813±.086 .964±.010 .959±.005 .793±.094 .798±.095

respect to the mean is considered without other higher-order
statistics [29], [30]. In consequence, it is better to use the
mapping function Mf to map bags into FVs, because some
information might be lost by using the mapping function Mv

in obtaining the new feature vectors. As shown in Table III,
miFV outperforms miVLAD in almost all cases. However,
miVLAD is more efficient than miFV in most cases. In
addition, we can also employ miV&F to get better accuracy
rates, while it will roughly double the time of miVLAD/miFV.

B. Simple-MI vs. miVLAD/miFV

Then we compare Simple-MI with the proposed algorithms.
We find that Simple-MI only computes the mean vector for
each bag. In order to compare these three algorithms in an
experimental setting that is fair to all algorithms, we set
the number of centroids in miVLAD and the number of
Gaussian components in miFV both to 1. The results on
nine MIL data sets are presented in Table VIII. In this table,
miVLAD outperforms other algorithms on four data sets, while
miFV beats other ones on five data sets. However, Simple-MI
performs worst on all the nine MIL data sets. For Simple-MI,
it only contains the average information of instances in bags.
So, it works well when the average of positive and negative
bags is quite different; while it will have poor accuracy rates
when the average of two bags is similar [2]. However, for
miVLAD and miFV, as shown in Equation (1), (16) and (17),

they can be considered as using the mapping functions to
model how two “distributions” (one is the MIL bag; the
other is the whole codebook in miVLAD/miFV) is different.
Therefore, even though the number of centers are set to 1,
the proposed algorithms can still capture more discriminative
information than Simple-MI. Because Simple-MI merely has
the average information of instances and contains no higher-
order statistics, it is not a surprise that its accuracy rates is the
lowest one among these three algorithms.

C. CCE vs. miVLAD/miFV

Finally, we compare CCE with miVLAD and miFV. In
CCE [9], it firstly collects the instances in all the bags together,
and then clusters the instances into c groups. Each bag is
then re-represented by c binary features, where the value
of the i-th feature is set to one if the concerned bag has
instances falling into the i-th group and zero otherwise. Hence,
a standard supervised learner can handle it. In addition, in
order to improve the robustness, it produces many classifiers
based on different clustering results and then combines their
predictions. As aforementioned, miFV considers higher-order
statistics, while miVLAD is only with the first-order statistics.
Here, CCE just takes binary codes mentioned above as feature
vectors, whose vectors contain much less information than
that of either miVLAD or miFV. Thus, possibly owing to
the difficulty of setting an adequate number of clusters, the
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Table VIII
COMPARISON RESULTS (MEAN±STD.) OF SIMPLE-MI, MIVLAD AND MIFV ON 9 DATA SETS. THE HIGHEST AVERAGE ACCURACY OF EACH COLUMN IS
SHOWN IN BOLD. NOTE THAT, THE NUMBER OF CENTROIDS IN MIVLAD AND THE NUMBER OF GAUSSIAN COMPONENTS IN MIFV ARE BOTH SET TO 1.

Algorithm
Data set Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image

Simple-MI .832±.123 .853±.111 .801±.088 .546±.092 .778±.092 .896±.007 .910±.008 .844±.090 .818±.099
miVLAD .836±.106 .857±.106 .829±.091 .589±.105 .809±.088 .968±.005 .961±.009 .869±.079 .854±.081
miFV .875±.106 .861±.106 .852±.081 .560±.099 .789±.091 .943±.008 .930±.010 .879±.075 .875±.072

accuracy of CCE is inferior to that of miVLAD or miFV
though it uses an additional ensemble step (cf. Figure 1).

VI. CONCLUSION

In domains where complex objects such as images or
genes are involved, multi-instance learning has achieved great
success. However, one common drawback of existing MIL al-
gorithms is that they are time-consuming and cannot deal with
large scale problems. We extend our preliminary study [11]
in this paper and propose two efficient and scalable MIL
algorithms, i.e., miVLAD and miFV, which transform the
bag form of MIL into new feature vector representations.
On one hand, the proposed algorithms have hundreds of,
even thousands of times faster speed than state-of-the-art
MIL algorithms; on the other hand, the proposed algorithms
can achieve comparable performances with other MIL al-
gorithms, e.g., MIBoosting and miGraph, and they perform
significantly better than miSVM, EM-DD, MIWrapper and
CCE. In addition, the proposed algorithms can also perform
well conveniently when they are deployed with the default
parameters.

The future research direction is related to the observations
in Table VIII. As we have discussed in Section V, we can sort
the following algorithms in the increasing order of how much
information in the original bag is encoded in the final vector
representation: Simple-MI ⇡ CCE < miVLAD < miFV. And,
from Figure 3, we can conclude that their accuracy follows the
same order in our experiments. This observation should not be
a pure coincidence, but hints that we need to find new vector
representations that keeps more information from the bags. In
addition, it is possible to extend our proposed algorithms to
deal with the multi-instance multi-class problems, especially
those problems with a great number of classes.
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