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Disentangling, Embedding and Ranking Label Cues
for Multi-Label Image Recognition

Zhao-Min Chen, Quan Cui, Xiu-Shen Wei, Member, IEEE, Xin Jin, and Yanwen Guo, Member, IEEE

Abstract—Maulti-label image recognition is a fundamental but
challenging computer vision and multimedia task. Great progress
has been achieved by exploiting label correlations among these
multiple labels associated with a single image, which is the most
crucial issue for multi-label image recognition. In this paper, to
explicitly model label correlations, we propose a unified deep
learning framework to Disentangle, Embed and Rank (DER)
the corresponding label cues. Specifically, we first obtain class-
aware disentangled maps (CADMs) by reforming deep activations
in accordance with the class-specific recognition weights. Then,
after transforming CADMs into the corresponding label vectors,
we propose an embedding operation from a metric learning
perspective to pull the relevant label vectors together and push
irrelevant label vectors away. Furthermore, a ranking operation
is employed, which aims to accurately and robustly measure
the similarity/dissimilarity of these label vectors. Our model
can be trained in an end-to-end manner with only image-level
supervision, during which the proposed embedding and ranking
operations can contribute to the CADMs learning through back-
propagation. In addition, the obtained CADMs are aggregated
and further used as an essential feature stream for the final multi-
label classification. We conduct extensive experiments on three
commonly used multi-label benchmark datasets. Quantitative
results show that our model can significantly and consistently
outperform previous competitive methods. Moreover, qualitative
analysis of our DER proposal also reveals the effectiveness of our
proposed model.

Index Terms—Multi-label image recognition, deep learning,
label correlation, CNNs, disentangling, embedding, ranking.

I. INTRODUCTION

ECOGNIZING multiple labels of an image is an im-
portant and practical problem in computer vision and
multimedia fields, as real-world images always contain rich
and diverse semantic information. Considerable efforts for
multi-label image classification have been devoted to various
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research directions, including scene recognition [1], human
attribute recognition [2], decision tree optimization [3], image
annotation [4], retail product recognition [5], etc. In contrast
with general image classification, multi-label classification
methods should be capable of modeling label correlations,
i.e., identifying and recovering the co-occurrence of multiple
labels.

Actually, most recent researches on multi-label image
recognition were mainly focused on capturing label correlations
from different perspectives. Some works [6] tackled this
problem by leveraging bounding box annotations; however,
these require additional expensive annotations. Some works [7],
[8] demonstrated promising results by implicitly establishing
the label correlations with attention mechanisms. On the
other hand, some researchers proposed to model the label
correlations directly with structure learning models, e.g., graph
convolutional networks (GCNs) [9] or recurrent neural networks
(RNNGs) [10]. However, it is a nontrivial task to define a graph
structure that is capable of disentangling category-specific
information from a classification network and then appropriately
modeling the correlations between them.

In this paper, we propose a unified multi-label image
classification framework consisting of three key operations,
named DER, i.e., disentangling, embedding and ranking. Our
DER operations are capable of modeling the label correla-
tions explicitly, without replying on additional annotations or
complicated graph structures. Specifically, we define the label
correlations locally at the image level, rather than globally at
the dataset level. That is, for one image, we consider the labels
of objects of interest that appear in the image as correlated,
while all other labels are considered to be uncorrelated.

The architecture of our model is shown in Fig. 1, which
consists of three key operations, i.e., disentangling, embedding
and ranking. 1) The disentangling operation is first employed
to generate class-aware disentangled maps (CADMs) for all
object categories defined by the dataset for each input image.
Particularly, we reform the deep activations of the classification
network with category-specific recognition weights. Each
CADM contains the semantic information about the corre-
sponding label, as well as the spatial contextual information
(cf. Fig. 2), which is helpful to improve the multi-label
image recognition performance. 2) The embedding operation
is designed to explicitly model label correlations from a
metric learning perspective, which enriches the aforementioned
CADMs with information of label correlations. Specifically,
we transform CADMs into label embedding vectors, where
the discriminative ability of CADMs is preserved. In the label
vector space, we first compute a “positive” dummy cluster
centroid among all correlated label vectors and then define the
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distance between a label vector and the dummy cluster centroid
as a quantitative measure of label co-occurrence. Specifically,
we design a label correlation embedding loss that encourages
the relevant/positive label vectors to gather closely around the
dummy cluster centroid while encouraging irrelevant/negative
label vectors to locate far from the cluster centroid. As a result,
if two objects are strongly correlated, the emergence of one
object may serve as a useful cue to activate another object
region in the corresponding CADM. 3) The ranking operation
is proposed for more accurately and robustly measuring the
similarity/dissimilarity of these label vectors and further refine
the CADMs. Distances between irrelevant label vectors and the
“positive” dummy cluster centroid are designed to be larger than
those between relevant label vectors and the centroid. It is worth
mentioning that while the embedding and ranking operations are
not involved in the inference phase, they advance the CADMs
of both correlated and uncorrelated object categories during
training and thus can boost the performance of multi-label
classification. The entire network is end-to-end trainable with
these three losses, i.e., conventional multi-label classification
loss, the proposed label correlation embedding loss and label
ranking loss.

It is worth noting that obtained CADMs are also aggregated
and further used as an essential feature stream for the final
multi-label classification (cf. Fig. 1). One of our ablation
studies shows that these two streams are interdependent, and
both general deep feature maps and CADMs possess critical
information for good multi-label image recognition results.
In addition, the recognition accuracy from the first stream is
always higher than that of the baseline method, which also
proves that the proposed model can enhance the representation
learning of the backbone network.

Our contributions can be summarized as follows:

o We deal with the challenge of multi-label image classifi-
cation by proposing a unified framework, called DER, for
explicitly modeling label correlations. The network can
be trained in an end-to-end fashion with only image-level
supervisions.

o We propose disentangling, embedding and ranking opera-
tions. The disentangling operation is capable of producing
CADMs which are enriched with class-specific properties,
as well as spatial contextual information. The label corre-
lation embedding and label ranking operations collaborate
closely for generating compact but representative label
vectors. The disentangling operation serves as the basis
for the embedding and ranking operations in order to
explicit model label correlations.

« We conduct comprehensive experiments on three widely-
used multi-label image classification datasets (MS-COCO,
VOC 2007, NUS-WIDE) and achieve consistent perfor-
mance improvement over the state-of-the-art approaches
on all of these datasets. Furthermore, ablation studies
and qualitative analysis are performed to verify the
effectiveness of our model.

This paper is an extension based on our previous work [11]
published in the proceedings of the International Conference
on Multimedia and Expo (ICME) 2019 as an oral presentation.

In this paper, better recognition accuracy is achieved by a
novel operation, (i.e., label ranking in Section III-D), and
extensive experiments on the VOC2007 dataset are provided to
verify the advantages of our method. In addition, more detailed
ablation studies are conducted to verify the effectiveness of
each module in our model. The rest of the paper is organized
as follows. Section II retrospectively reviews the related works.
Section III details the proposed model. Experiments and
analysis are provided in Section IV, followed by the conclusion
in Section V.

II. RELATED WORK

In this section, we will review two aspects of the relevant
works: multi-label image recognition and deep metric learning.

A. Multi-label image recognition

Owing to the establishment of large-scale labeled datasets
(e.g., MS-COCO [12] and ImageNet [13]) and the rapid
development of deep CNNs [14], [15], rapid advancements
in image classification have been achieved in recent years.
In parallel with conventional single-label image classification,
many researchers have attempted to adapt the deep CNNs to
the multi-label image recognition problem and achieved good
recognition performance.

A simple and straightforward method for multi-label recog-
nition is to train one binary deep classifier for each label.
However, the major challenge of learning from multi-label
data lies in the potentially tremendously-sized output space.
Here, the number of possible label sets to be predicted grows
exponentially as the number of class labels increases. For
example, a label space with a moderate number of 20 class
labels will lead to more than 1 million (i.e., 22°) possible label
sets. Thus, many label sets will rarely have examples appearing
in the training set, leading to poor performance if they are
learned separately.

To overcome the challenges of such an enormous output
space, some researchers have used proposal generators to
degrade multi-label learning into single label learning. For
example, Wei et al. [16] proposed the Hypotheses-CNN-
Pooling network to aggregate the label scores of each of
the specific object hypotheses to achieve the final multi-
label predictions. Yang et al. [6] treated images as a bag
of instances/proposals and solved a multi-instance learning
problem. However, these aforementioned methods ignored the
label correlation when degrading it into the single-label task.
In the following, researchers focused on exploiting the label
correlation to facilitate the learning process [17]-[19]. In the
literature, Gong et al. [20] evaluated various loss functions
and found that weighted approximate ranking loss worked
best with deep CNNs. Additionally, Hu e al. [21] proposed
employing a structured inference neural network to model the
label correlation of multiple labels. Li er al. [22] leveraged
probabilistic graphical models to capture the label correlation
dependency. Furthermore, Wang et al. [10] directly utilized
recurrent neural networks (RNNs) to exploit higher-order label
relationships. Liu et al. [23] proposed the easy-to-hard learning
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Figure 1. Overall framework of our proposed model for multi-label image recognition during training phase. The input image is first fed to backbone CNNs
(fenn) for the deep activations, (i.e., X) of the last convolutional layer. Next, we utilize global max-pooling (GMP) to obtain the image-level features and then
conduct multi-label classification (fr.15) based on these features. In the following, we employ the classification weights (6¢.1s) on X to generate the CADMs,
which could disentangle class-aware specific regions/maps corresponding to multiple image labels. After transforming CADMs into the corresponding label

vectors, the embedding operation is performed from a metric learning perspective to pull relevant label vectors (“person

»

sports ball” and “tennis

racket”) together and push irrelevant label vectors away. Furthermore, a ranking operation is employed, which aims at measuring the similarity/dissimilarity
of these label vectors accurately and robustly. The entire model is end-to-end trainable and driven by multi-label classification loss, label correlation embedding
loss and label ranking loss with only image-level supervisions. (Best viewed in color.)

paradigm for multi-label classification to automatically identify
easy and hard labels.

Recently, researchers attempted to model label correlation
with region-based multi-label approaches. Some works at-
tempted to apply the attention mechanism to discover the
label correlations among different attentional regions, e.g., [7],
[8]. In [7], the authors developed the spatial regularization
net to focus on the objectiveness regions and further learned
label correlations of these regions by self-attention. Meanwhile,
Wang et al. [8] proposed the spatial transformer to first capture
the objectiveness regions and then use LSTMs to handle the
label correlation. Furthermore, some works utilized graph
structure to model the label correlations, e.g., [9], [24], [25].
Chen et al. [9] employed a graph convolution network (GCN)
to encode the relationship between categories, where each node
is represented by a category-specific word embedding vector
and the edge of the graph characterizes the correlations of
different categories. Chen et al. [25] introduced an RNN as a
graph for label correlation modeling, which considers the node
as a category-specific feature of each image based on word
embedding, and the edge as the relationship between different
categories. Lee er al. [24] attempted to describe the label
relationships by incorporating knowledge graphs. Although the
above approaches can achieve good multi-label recognition
accuracy, all of them employ word embedding vectors as
auxiliary information, assuming that all object categories
have corresponding word embedding vectors. However, this
assumption might not be satisfied for some unusual categories.
Furthermore, the word embedding vectors might impose biased
priors for the learning of the graph model, since they have no
direct relation with the dataset of interest.

Compared to previous works, our proposed DER model

can generate the class-aware disentangled maps (rather than
local regions) corresponding to each label of multiple labels.
These class-aware disentangled maps contain intact and purely
discriminative category-wise information. Moreover, based on
these maps, we model the label correlation by formulating
it as an effective and efficient label correlation embedding
operation, which is a more explicit method for evaluating
label co-occurrence. Furthermore, the label ranking operation
is also essential, which aims at accurately and robustly
measuring the similarity/dissimilarity of these label vectors. The
experimental results validate the effectiveness of our proposed
model, especially with respect to these three key operations:
Disentangling, Embedding and Ranking.

B. Deep metric learning

In the deep learning era, metric learning aims at learning
compact but representative embeddings for samples so that
similar/relevant objects are located closely, while dissimi-
lar/irrelevant objects are located far apart. With the advent of
CNN:s, broad applications have benefited from deep metric
learning approaches, including face recognition [26]-[28],
image retrieval [29], [30], person re-identification [31]-[33],
vehicle re-identification [34], object tracking [35] and many
other applications [36], [37].

Contrastive loss [38] was initially proposed for dimensional-
ity reduction and became the footstone in the metric learning
field. This loss was optimized by minimizing the distance
of positive pairs while keeping negative pair distances larger
than a specific margin. Subsequently, better performance was
achieved by triplet loss [39] for tackling the problem that
positive pairs are always independent from negative pairs
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Figure 2. Example images from the MS-COCO dataset [12] with the corresponding class-aware disentangled maps (CADMs). For each CADM, we first use
linear interpolation to resize the CADM to 1 X 448 x 448. Then, we utilize the visualization tools to convert each CADM to color map. For each image, we
first sort the summation activation values of every CADM in descending order and then present the class-aware maps in the same order. It is clear that positive
labels correspond to strong activations in their own CADMs, while negative labels activate almost nothing by comparison. (Best viewed in color.)

in the distance calculation process. Specifically, the positive
pair distance adds a margin that is forced to be smaller
than the negative pair distance. However, triplet loss-based
methods often suffer from low convergence and imperfect
performance since directly sampling triplets cannot guarantee
their effectiveness. To address this issue, semi-hard negative
mining [40], [41] was proposed to make the training process
more efficient and to improve the performance. In addition,
several losses [42]-[44] were proposed in cooperation with
the classification loss (cross-entropy loss, binary cross-entropy
loss, etc.). Wen et al. [42] kept a dummy centroid for every
category and proposed center loss to pull data points from the
same class close to the corresponding dummy centroid. Liu et
al. [43] proposed constraining the embeddings learned by the
classification loss on a hypersphere. Deng et al. [44] improved
this kind of method by introducing a margin for generating
more highly discriminative features.

In recent years, in contrast with pair-based and triplet-based
methods, list-based methods have been widely investigated. To
form a more rational list, various ranking losses [45]-[47] were
proposed for optimizing the ranking in retrieval result lists. He
et al. [46] proposed a trainable AP loss calculated by reranking
the query results into ideal results. Chen et al. [45] proposed a
unified deep ranking framework for person Re-ID that directly
predicts the similarity of a pair of pedestrian images via
joint representation learning. Wang et al. [47] incorporated
all nontrivial data points and exploited the structure among
them by proposing the ranked list loss. Additionally, BIER [48]
attempted to increase the robustness of embeddings by dividing

the last embedding layer of a deep network into an embedding
ensemble. Then, the training of the ensemble was formulated
as an online gradient boosting problem. In [49], a large margin
metric learning paradigm was proposed. Both the input and
output were projected into the same embedding space, and a
distance metric was applied on these embeddings to discover
output dependency such that instances with similar multiple
outputs could gather closely in the embedding space, while
those with different outputs could be moved far away.

III. PROPOSED METHOD

We propose a unified framework by disentangling class-
aware maps, embedding label correlation information and
ranking label vectors to accomplish multi-label image recog-
nition. The class-aware disentangled maps (CADMs) are
proposed to assist the multi-label image recognition. With
the embedding operation, CADMs are enriched with label
correlations. Subsequently, the ranking operation is proposed
to model label correlations more accurately and further refine
the CADMs. The entire framework consisting of the above
three key operations is illustrated in Fig. 1. In this section,
we first introduce the notations, then detail these three key
operations, and finally provide an overview of the network and
the training scheme.

A. Notations

The following notations are used in the rest of this pa-
per. Let I denote an input image with ground-truth labels
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y= [y vy . where 4 is a binary indicator. y¢ = 1
indicates that image I is tagged with label ¢, and y¢ = 0
otherwise. C is the number of all possible labels in the
dataset. For multi-label image recognition, the goal is to predict
the multi-label vector y for a test input I X represents the
activations of the last convolutional layer with shape d x h x w.
For instance, given the widely-used ResNet101 network with
448 x 448 input size, the activations’ shape of the “conv5_x’
layer is 2048 x 14 x14. f.,, denotes the backbone convolutional
neural network with parameters S = {j | ¥/ = 1} denotes the
correlated label set of the input image I.

s

B. Class-aware map disentangling

In this section, we introduce our disentangling operation,
which is designed to disentangle the class-aware maps from
the deep representation. The disentangled maps serve as the
basis for the following embedding and ranking operations.

Based on X, we globally max-pool the image representa-
tions into an image-level feature and then conduct one fully
connected layer fr.s with parameters 6s.)s € R4*C for classi-
fication. Inspired by [50], we can utilize 05 to disentangle
C class-aware maps from these distributed representations of
X [51], [52]. However, in contrast with the global average-
pooling used in [50], here we employ global max-pooling to
maintain the highlighted activations of small-scale objects that
frequently emerge in multi-label images.

Concretely, 0, denotes the classification weights w.r.t. the
c-th label. From another perspective, ¢, can be treated as the
filter to filter out class-specific discriminative information for
the c-th label from X. We omit the bias term here because it
exerts little impact on the classification performance.

We denote A, as the corresponding class-aware disentangled
map for class ¢, which can be obtained by

A =05, - XeRY, 1)

Each A, is disentangled for its corresponding c-th label. Thus,
by collecting all C' disentangled maps, we obtain

A =0 - X € RO, 2)

In fact, the class-aware disentangled maps (CADMs) A are
simply weighted linear sums of the presence of these visual
patterns at different spatial locations, and A of all CADMs
shares the same parameters ¢ s. In Fig. 2, several qualitative
visualization results of CADMs for multi-label images are
provided. As shown in that figure, each CADM corresponds
to one specific and independent label meaning. Moreover, it is
apparent that the positive label has stronger activations in its
class-aware map, and the negative labels have much weaker,
or even no activations. These observations verify that the class-
aware map disentangling approach can both decouple label
semantic information and localize class-specific regions at the
same time.

C. Label correlation embedding

After disentangling, the obtained CADMs absorb category-
specific semantic information. Then, we propose to model the
label correlations explicitly via an embedding operation in a
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Figure 3.
improving multi-label image recognition performance. We explicitly model the
label correlation in a metric learning paradigm, which can benefit multi-label
recognition, although only with image-level supervisions. (Best viewed in
color and zoomed in.)

Ilustration of our proposed label correlation embedding for

metric learning fashion to enrich CADMs with the information
of label correlations. We design a label correlation embedding
loss, which is motivated by the fact that co-occurring labels in
an image probably share a compact embedding space, while
irrelevant label vectors ought to be located far apart.

In our model, we embed the class-aware region maps
associated with an image I into a multidimensional label
space, where each label corresponds to its fixed size label
vector a.. Therefore, the co-occurrence of two related labels
(i.e., label vectors) can be measured by their distance in this
label space. More intuitively, in the multi-label scenario, these
correlated labels (i.e., label vectors) could be clustered, while
the uncorrelated labels should be apart from the dummy cluster,
cf. Fig. 3.

Specifically, to obtain the label vectors, we first flatten
the class-aware disentangled map A, into a single vector
faat(Ae) € RI*(hxw) " Then, we introduce a nonlinear
transformation fombed(*; fembed) 0N faat(Ac) for embedding
it into a. in the label vectors space:

a. = fembed (fﬂat (Ac); 6embed) 5 (3)

where Oempeq represents the embedding parameters.
Thus, the objective of label correlation embedding becomes

minimization of the summation of the pairwise Euclidean
distances of correlated label vectors:

Gmin Z Z

embed Se S (k<jkeS)

“4)

2
la; —axll; -

where the correlated label set S = {j | 4/ = 1}. However, for
a large-scale number of labels, Eq. (4) exhibits computational
redundancy. By some transformations of the term in Eq. (4),
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Thus, the optimization problem in Eq. (4) can be written as
mln Z lla; —a||2 , (6)
embed
where a = I%Izjes a; is the mean label vector of all

of the correlated labels. Compared with Eq. (4), Eq. (6) is
computationally efficient and could contribute to rapid model
convergence. Furthermore, considering that the uncorrelated
label vectors should be apart from the label mean, the final
label correlation embedding loss function becomes

Lie=lla; ~alz+ > |1~ llax ~al3] . @

jes keS

where the [-], operation indicates the hinge function max(0, -),
and the uncorrelated label set S = {k | y* = 0}. By intro-

> kes llak into Eq. (7),
the relationships of correlated labels and uncorrelated labels
can be considered at the same time, which can better capture
the label co-occurrence from these two different perspectives.
Furthermore, this approach can prevent obtaining the trivial
solution [53] Le, a.= fembed(fﬂat( ) aembed) =0.

ducing the second term [1 - - ng

D. Label ranking

One limitation of label correlation embedding loss, however,
is that it cannot guarantee a reasonable ranking of the distances
between relevant/irrelevant labels and the dummy cluster.
Intuitively, the distances between irrelevant labels and the
dummy cluster should be larger than those of relevant labels,

sk @ Botle Label correlation Sink I /
embedding .\1

Input image Toilet

Label correlation
o e embedding T /

[ ] Sink
LA
Ranking . \
. - ] !
Over

Zeby

Figure 4. Tllustration of label ranking for accurately and robustly measuring the
similarity/dissimilarity of these label vectors. The distances between irrelevant
labels and the dummy cluster are driven to be larger than the distances among
relevant labels and the dummy cluster; i.e., the distance corresponding to
category “Oven” becomes greater than that of “Bottle”. (Best viewed in color
and zoomed in.)

cf. Fig. 4. We tackle this problem by proposing a ranking loss
that encourages shorter distances for correlated label vectors
than for uncorrelated label vectors, such as:

VY (jes kes) la; — ng < |lax — ng ) ®)
where ||a; — d||§ is the distance from correlated label vector
(a;) to the mean label vector (@), while |ay — d||§ is the
distance from the uncorrelated label vector to the mean label
vector.

However, this function is not computationally friendly
because it calculates distances of all label vectors and centroid
pairs. Hence, we propose the following label ranking function:

_2 . _ 12
max ||a; — al|;, < min |la; — al; . )
max |, — al} < min |l - al}
We enforce ranking only on the maximum distance of cor-
related label vector and the minimum distance of uncorrelated
label vector. Our label ranking loss in the hinge-loss formulation
is therefore given as follows:
(10)

L = |1+ (max|ja; — d||§ — min [|ay — 6”3)
JjES keS

+

This loss can make the distribution label vectors more compact.

E. Overall network and training scheme

As shown in Fig. 1, for an input multi-label image I,
conventional convolutional neural networks are employed to
learn a holistic image representation, which can be formulated
as:

X = fonn(; € Réxhxw (11)

where X includes a set of 2-D feature maps. These feature
maps are embedded with rich spatial information and are also
known to obtain mid- and high-level information [54].

Note that we aggregate predicted label confidences from two
streams for the final prediction.

cnn)
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Algorithm 1 Training scheme of our proposed method.

Require: Input multi-label image dataset D = {(L,y)}.
Ensure: Prediction y.

1: for i =1 to Epoches do

2: for each image I and its ground truth y in D do

3 X= fcnn(I; ecnn)

4 Ytels = ffcls(fgmp (X>7 efcls)

5: A= HdeT -X

6: yscls = fgmp(A)

7: ?3 =0.5- (gfcls + ’gscls)

8: a= fembed(fﬂat (A)7 aembed) )

9: a= ﬁzjes a; (where S = {jly/ = 1} is the
correlated label set)

10: Compute loss £L=Los+ - Lice + 8- L1y

11: Backward £ and update parameters.

12: end for

13: end for

In the first stream, we employ global max-pooling on
X to obtain the image-level features, followed by binary
classification for each of the C' labels:

’gfcls = ffcls(fgmp(x); afcls) S RC ) (12)

where Jrets =[G Tiges - - - ,gjf%s]T, and each element of
Ysels 18 a confidence score.

For the second stream, after reforming X into CADMs A
with classification weights 6.5, we obtain additional label
confidences g5 by directly applying depthwise global max-
pooling on A:

yscls = fgmp(A) S RC . (13)

CADMs contain not only the local-level spatial contextual
information (i.e., activations) but also the global-level class-
aware semantic meaning. To combine both holistic and class-
specific information, we aggregate these two label confidences
as the final label prediction confidences by

.1 .
Yy = _(yfcls + yscls) € RC . (14)

2
For training, y will be used to measure the prediction errors
w.r.t. the ground-truth labels y as

C
Las ==Y ylog(a(§)) + (1 - y°)log(1 — a(§°)), (15)

where o(+) is the sigmoid function.

Beyond L5, our model is also driven by two other loss
functions, i.e., L) and Ly, which are elaborated in previous
subsections. The total loss function is presented as follows:

£:£cls+a'ﬁlce+ﬂ'ﬁlr- (16)

Here, a and § are trade-off parameters that are set to 0.5
and 0.05, respectively, in all experiments. In Algorithm 1, we
present the training scheme our DER method for clarity, where
the batch size is set to 1 for simplicity.
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Figure 5. Sampled images from MS-COCO, Pascal VOC 2007 and NUS-
WIDE. (a) MS-COCO. (b) Pascal VOC 2007. (c) NUS-WIDE.

IV. EXPERIMENTS

In this section, we first describe the evaluation metrics,
implementation details and datasets. Then, we report the
experimental results on three benchmark multi-label datasets,
i.e., MS-COCO [12], NUS-WIDE [55] and VOC 2007 [56]. In
the next section, we present the ablation studies on the key
components of the proposed DER model. Finally, visualization
and qualitative analyses are presented.
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A. Evaluation metrics

A comprehensive study of multi-label evaluation metrics
is presented in [57]. According to this study, we compute
macro/micro precision, macro/micro recall and macro/micro
F1-measure for performance evaluation. Specifically, the macro
precision (CP), macro recall (CR) and macro F1-measure (CF1)
indicate the average pre-class precision, recall and F1-measure,
respectively. Meanwhile, the micro precision (OP), micro recall
(OR) and micro F1-measure (OF1) represent the average overall
precision, recall and Fl-measure, respectively. For each image,
we assign labels with confidence greater than 0.5 as positive
and compare them with the ground-truth labels. These measures
do not require a fixed number of labels per image. In particular,
for the MS-COCO [12] and NUS-WIDE [55] datasets, we also
report the results of top-3 labels with highest confidences in
order to assure fair comparison with existing state-of-the-art
methods, cf. [8], [58].

1 Ny 2 Nf
CP_GZ:NZ?“ OP—ZiNip,
1 ; 2 NP
OR:G; H RS
2x CP x CR 2x OP x OR
Fl==---" -~ Fl=22Y2 2
¢ CP+CR '’ 0 OP+OR ~’

where C' is the number of labels, and N{ is the number of
correctly predicted images for the i-th label. N{ is the number
of ground-truth images for the i-th label, and N7 is the number
of predicted images for the i-th label.

Additionally, in general, the average precision (AP) for each
label and the mean average precision (mAP) are important for
evaluating multi-label image recognition accuracy, and they
are also employed for performance comparison. AP and mAP
are computed by using Eq. (17) and Eq. (18), cf. [59].

1 N
— > Py (n) X (Rpy, () = Rpy, (n—1)), (17)

Ye p=1

AP(y.) =

where L, is the number of images relevant to the label y., N
is the total number of retrieved images for the label y., n is
the rank in the list of retrieved images, and Py, (n) and R, (n)
are the precision and recall at rank n.

mAP = (18)

Ql

1 &
> AP(y.).
c=1

B. Implementation details

In our experiments, the input images are resized to 512 x 512
and randomly cropped into 448 x 448 with random horizontal
flips for data augmentation. The transformation function
Sembed (+; Gembed) is a two-layer fully connected network with
ReLU as its activation function. The dimensionality for both
of the two fully connected layers in our network is 196, which
corresponds to the feature map size of the last convolutional
layer (14 x 14). Following [7], [61], ResNet-101 [14] is
selected as the backbone of our proposed model. We utilize

the pre-trained model based on ImageNet for model parameter
initialization. For optimization, conventional stochastic gradient
descent (SGD) with momentum of 0.9 is selected as the network
optimizer. The weight decay is set to 10~*. The initial learning
rate is 0.01, and it is divided by 10 every 20 epochs until
60, the total number of training epochs. We choose PyTorch!
for conducting experiments. As described in Section III-E,
we set a and (B to 0.5 and 0.05, respectively, in all of the
experiments. The entire training process occurs in end-to-end
fashion. All of the experiments are run on a computer with an
Intel Xeon E5-2660 v4 processor, 120 GB main memory, and
eight GTX-1080Ti GPUs.

C. Datasets

We conduct performance evaluations using three popular
benchmark multi-label image datasets: MS-COCO [12], Pascal
VOC 2007 [56] and NUS-WIDE [55].

1) Microsoft COCO dataset: Microsoft COCO [12] is a
widely used dataset for multi-label image recognition. The
training set is composed of 82,081 images, and the validation
set consists of 40, 504 images. The dataset covers 80 common
object categories, each image belongs to 1-10 categories and
each image contains approximately 3.5 labels on average.
Because the ground-truth labels of the test set are not available,
we evaluate the performances of all methods on the validation
set instead. For comparison with other methods on the MS-
COCO dataset, we report mAP, CP, CR, CF1, OP, OR, and
OF1.

2) Pascal VOC 2007 dataset: The PASCAL Visual Object
Classes Challenge 2007 (VOC 2007) dataset [56] contains
9,963 images from a total of 20 object categories, each image
has 1-5 ground-truth labels, and the average number of ground-
truth labels per image is 1.4. VOC 2007 is a popular dataset
used as the benchmark for multi-label recognition. VOC 2007
is divided into train, val, and test sets. Following [10], [58],
[62], we train our model on the trainval set and evaluate the
recognition performance on the test set. For this dataset, the
evaluation metrics are AP and mAP.

3) NUS-WIDE: The NUS-WIDE dataset [55] is another
benchmark dataset for multi-label recognition that contains
269, 648 images with associated tags from F1lickr?. This
dataset is manually annotated by 81 concepts, with 2.4 concept
labels per image on average. Official train/test splits are
utilized, i.e., 161, 789 images for training and 107, 859 images
for testing. This dataset provides images with four different
resolutions, namely, high-resolution images, medium-resolution
images, low-resolution images and original resolution images,
and we use low-resolution images in our experiment. We utilize
the same evaluation metrics as MS-COCO for this dataset.

Some sampled images from the MS-COCO, Pascal VOC
2007 and NUS-WIDE datasets are shown in Fig. 5.

D. Comparison with state-of-the-art methods

1) Performance on the MS-COCO dataset: On MS-COCO,
we compare our proposed model with recent state-of-the-art

'PyTorch is available at: http://pytorch.org/
https://www.flickr.com/
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Table 1
COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE MS-COCO DATASET. * DENOTES THAT WE FOLLOW THE SETTINGS OF SSGRL [25].
All top-3
Methods mAP | CP  CR CFI OP OR OFI | CP CR CFI OP OR OFI
WARP [20] _ - _ _ - Z — 1593 525 557 598 614 607
CNN-RNN [10] 612 | - - - - . — | 660 556 604 692 664 678

RNN-Attention [8] - - - — _
Order-Free RNN [60] - - - _ _

- - 79.1 587 674 84.0 63.0 72.0
- - 71.6 548 621 742 622 677

ML-ZSL [24] - - - - - - - 741 645 69.0 - - -
SRN [7] 77.1 | 81.6 654 712 827 699 758 | 852 588 674 874 625 729
Multi-Evidence [61] - 804 702 749 852 725 784 | 845 622 70.6 89.1 643 747
ML-GCN [9] 83.0 | 85.1 72.0 780 858 754 803 | 892 64.1 746 90.5 665 76.7
SSGRL [25] 838 | 899 685 768 91.3 708 79.7 | 91.9 625 727 938 641 76.2
ResNet-101 (Baseline) | 78.3 | 80.2 66.7 728 839 70.8 768 | 84.1 594 69.7 89.1 628 73.6
Our DER 82.8 | 84.7 71.6 77.6 860 749 80.0 | 88.7 63.7 741 90.6 66.1 764
Our DER* 839 | 872 707 781 884 735 803|904 639 748 920 658 76.7
Table II
COMPARISONS OF AP AND MAP WITH STATE-OF-THE-ART METHODS ON THE VOC 2007 DATASET. * DENOTES THAT WE FOLLOW THE SETTINGS OF
SSGRL [25].
Methods aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv |mAP

CNN-SVM [63] 88.581.083.582.0 42.0 72.585.381.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.687.471.8/73.9
CNN-RNN [10] 96.783.194.292.8 61.2 82.189.194.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.399.7 78.6|84.0
DCNN-VGG [64] 97.593.095.693.5 59.8 86.394.894.5 68.5 84.6 83.7 92.5 94.7 89.0 97.4 73.5 87.3 75.0 98.4 84.0/87.2

RLSD [62] 96.492.793.894.1 71.2 92.594.295.7 74.3 90.0 74.2 954 96.2 92.1 97.9 66.9 93.5 73.797.5 87.6|88.5
FeV+LV [6] 97.997.096.694.6 73.6 93.996.595.5 73.7 90.3 82.8 95.4 97.7 959 98.6 77.6 88.7 78.0 98.3 89.0/90.6
DCNN-RN [64] 98.696.598.797.1 68.2 91.897.897.5 74.7 87.586.8 97.4 98.0 93.3 98.8 77.5 91.3 79.6 99.0 87.3/90.8
HCP [16] 98.697.198.095.6 75.3 94.795.897.3 73.1 90.2 80.0 97.3 96.1 949 96.3 783 94.7 76.2 97.9 91.5/90.9

RNN-Attention (512) [8] |98.596.795.695.7 73.7 92.195.896.8 76.5 92.9 87.2 96.6 97.5 92.8 98.3 76.9 91.3 83.698.6 88.1|91.3
Atten-Reinforce (512) [58](98.6 96.996.394.8 74.1 91.996.397.1 76.9 91.4 86.2 96.6 96.4 93.1 98.0 79.8 91.7 83.1 98.3 88.6/91.3

SSGRL [25] 99.597.197.697.8 82.6 94.896.798.1 78.0 97.0 85.6 97.8 98.3 96.4 98.8 84.9 96.5 79.8 98.4 92.8/93.4
ML-GCN [9] 99.598.598.698.1 80.8 94.697.298.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7/94.0
VGG (Baseline) 98.596.196.993.6 76.8 88.196.596.6 74.1 86.8 79.595.8 94.3 93.0 98.9 77.3 87.1 75.597.5 88.9(89.6
VGG-DER 98.497.798.394.2 79.4 92.197.198.0 79.7 89.9 87.7 97.3 96.2 953 99.0 81.8 86.0 81.998.1 91.2{92.0
ResNet-101 (Baseline) [99.597.797.896.4 65.7 91.896.197.6 74.2 80.9 85.0 98.4 96.5 959 98.4 70.1 88.3 80.298.9 §9.2{89.9
Our DER 99.798.698.598.4 80.4 94.597.597.7 84.0 96.0 87.2 98.1 98.4 96.4 99.1 853 96.6 84.4 99.8 94.1/194.2
Our DER* 99.798.398.898.2 81.5 95.697.798.4 84.1 96.5 88.9 98.8 98.6 96.7 99.3 85.4 97.0 87.198.7 93.8/94.6

Table III

COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE NUS-WIDE DATASET. * DENOTES THAT WE FOLLOW THE SETTINGS OF SSGRL [25].

Methods All top-3

mAP | CP CR CFI OP OR OFI | CP CR CFI OP OR OFI
KNN [55] - - - - - - - 326 193 243 439 534 476
WARP [20] - - - - - - - 317 356 335 486 60.5 539
CNN-RNN [10] - - - - - - - 40.5 304 347 499 61.7 552
Order-Free RNN [60] - - - - - - - 59.4 507 547 69.0 714 702

ML-ZSL [24] - - - - - - - 434 482 457 - - -
SRN [7] 620 | 652 558 585 755 715 734 | 482 588 489 562 69.6 622
ResNet-101 (Baseline) | 60.4 | 63.1 555 59.1 743 717 729 | 649 483 553 768 62.1 687
Our DER 63.0 | 642 579 609 755 73.0 742 | 665 492 565 783 632 70.7
Our DER* 63.3 | 655 575 612 766 720 742 | 676 486 56.6 792 63.6 705

methods. The comparison results are reported in Table I. It is
clearly observed that our DER method outperforms the previous
state-of-the-art methods with the same experimental settings.
For example, our DER can obtain +5.7% mAP improvement
over the SRN method. For comparisons with ML-GCN and SS-
GRL, which adopt more complex data augmentation strategies
and higher resolutions for training images, we strictly follow
the settings of SSGRL to reimplement our method (DER¥*),
and our method can also obtain comparable results.

2) Performance on the VOC 2007 dataset: We compare
our method with the recent state-of-the-art methods on VOC
2007. The experimental results are presented in Table II. Since
many previous methods used the VGG model as their base
model, for fair comparisons, we also report the results using
VGG models. It is apparent to observe that in comparison with
the previous methods, our proposed method offers significant
improvement: we achieve 94.2% mAP on VOC 2007, which
outperforms the state of the art. Even when using the VGG
model as the base model, we can still obtain 92.0% mAP,
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Table IV
MAP PERFORMANCE ON THREE DATASETS FOR DIFFERENT OPERATION
COMBINATIONS.

Operations mAP
Disentangle Embed Rank | COCO VOC 2007 NUS-WIDE
78.3 89.9 60.4
v 79.9 91.7 61.6
v v 82.3 93.7 62.8
v v v 82.8 94.2 63.0
Table V
INFLUENCE OF DIFFERENT CONFIDENCE.
mAP
Methods COCO VOC 2007 NUS-WIDE
ResNet-101 (Baseline) 78.3 89.9 60.4
First confidence (¥sc1s) 80.5 92.6 61.5
Second confidence (Ysas) | 79.3 92.3 54.9
Joint confidence (%) 82.8 94.2 63.0

which is 0.7% higher than that of the state of the art. We also
reimplement our method following the settings of SSGRL and
achieve 94.6%, outperforming ML-GCN and SSGRL by 0.6%
and 1.2%, respectively.

3) Performance on the NUS-WIDE dataset: Table III shows
the comparisons with recent state-of-the-art methods on the
NUS-WIDE dataset. We can obviously find that our method
achieves the best multi-label recognition performance compared
with that of the previous state-of-the-art methods, especially
for the evaluations of mAP, CF1 (All), OF1 (All), CF1 (top-3)
and OF1 (top-3).

E. Ablation studies

In this section, we perform ablation studies from four
different aspects, including the impact of different operation
combinations on accuracy, effects of different confidences, the
effect of « for label correlation embedding and the effect of 3
for label ranking.

1) The impact of different operation combinations: We
perform an ablation study to analyze the impact of different
operation combinations in Table IV. The setting details are as
follows:

o ResNet-101 (Baseline): We use ResNet-101 with global
max pooling as our baseline.

o Baseline + Disentangle: By setting the trade-off parame-
ters in Eq. (16) to O, the proposed losses will make no
contribution to the network learning.

o Baseline + Disentangle + Embed: Setting o = 0.5 and
B = 0 activates the label correlation embedding operation.

o Baseline + Disentangle + Embed + Rank: With o« = 0.5
and 3 = 0.05, both operations will function jointly.

The experiment results show that introducing the class-aware
map disentangling operation leads to a slight improvement
(+1.0%). This operation can be considered a naive attention
module for the general deep feature. When the label correlation
embedding operation and disentangling operation function
jointly, there is a significant performance boost (+2.0%) for
all benchmarks. The improvement proves the effectiveness

N /_‘__)’/\‘—Na

mAP (%)

60

Figure 6.
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Accuracy comparisons with different values of 5 on the MS-COCO

of the proposed operations for modeling the label correlation
and the operations and further refines the backbone for better
representation ability. In addition, bringing in the label ranking
loss achieves better mAP because it helps to accurately and
robustly measure the similarity/dissimilarity of these label
vectors.

2) Effects of different confidences: To demonstrate the
integrity of our method, we test the multi-label classification
performance according to prediction score from only the first
or the second stream. It is worth noting that the prediction
scores are extracted from a well-trained network under the
following settings:

o The first stream confidence means that we only use Yscs

in Eq. (12) to calculate mAP.

o The second stream confidence denotes that we use Yscls

in Eq. (13) to obtain the result.

o Joint confidence, which is our final result, is determined

using g in Eq. (14) to obtain the accuracy.

The results are shown in Table V. The mAP score of the first
stream is always higher than that of the second stream, but both
scores are inferior to the jointly produced score, showing that
both scores are interdependent. In particular, the first scores on
three benchmarks are better than those produced by the baseline
method, which indicates that our method greatly benefits the
representation learning.

3) Effects of different o for label correlation embedding:
To explore the effects of different o in Eq. (7) on multi-label
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Figure 8. Visualization and comparisons of class-aware disentangled maps (CADMs). For each CADM, we first use linear interpolation to resize the CADM to
1 x 448 x 448. Then, we utilize the visualization tools to convert each CADM to color map. For each category, the left CADM is generated by vanilla ResNet
without disentangling during training, the middle and right CADMs are generated with the proposed disentangling step, where the middle map is generated
without our metric learning component, and the right map is generated in cooperation with proposed metric learning. (Best viewed in color.)

image recognition performance, we change the values of «
in a set of {0.0,0.1,0.2,0.3,...,1.0}, as depicted in Fig. 6.
We observe that when o« = 0.5, it can achieve the best
performance on MS-COCO. Either increasing or decreasing
the value of a will reduce the mAP. A low « reduces the
impact of the label correlation embedding operation, and when
a = 0, the label correlation embedding operation has failed.
Compared with the results of o = 0.5, the model without class-
aware disentangling and label correlation embedding exhibits a
significant performance drop, i.e., a 2.8% lower mAP than that
of our proposal. A high o will make representation learning
more difficult.

4) Effects of different B values: To study how pa-
rameter 3 affects the performance accuracy, we conduct
experiments using the MS-COCO dataset and set [ to
{0.0,0.05,0.10,0.15,...,0.5} in turn. The mAP scores are
shown in Fig. 7. From Fig. 7, we can obtain the optimal
result when 5 = 0.05, which proves that the label ranking can
make the distribution label vectors more compact and actualize
an improvement in performance. However, when g > 0.05, the
accuracy decreases as (3 increases; one possible reason for this

Table VI
COMPARISONS WITH TRIPLET LOSS.
mAP
Methods COCO VOC 2007 NUS-WIDE
ResNet-101 (Baseline) | 78.3 89.9 60.4
D + Triplet Loss 81.0 92.5 61.2
Our DER 82.8 94.2 63.0

is that the high value of § will impact the label correlation
embedding and make representation learning more difficult.
5) Comparison with triplet loss: The triplet loss [39] with
proper sampling strategy can also pull correlated label vectors
together and push uncorrelated label vectors away. However,
there are two differences between triplet loss and our method.
First, triplet loss has high computational complexity due to its
sampling strategy, while for our correlation embedding loss
and ranking loss, all label embedding vectors are utilized for
computation in one pass, making the optimization process more
efficient. Second, if we treat all correlated label embeddings
as one group and the uncorrelated label embeddings as the
another group, triplet loss tends to pull the samples in each
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group together (including the uncorrelated labels), which would,
however, not be in accordance with our motivation. Our method
is designed to push uncorrelated labels away from the “positive”
dummy cluster centroid, rather than to pull them together. To
compare the effectiveness between our proposed method and
triplet loss, we have reimplemented triplet loss and reported
the results in Table VI. While triplet loss achieves a certain
degree of accuracy gain over the baseline method, it is still
inferior to our method.

FE. Visualization and analyses

In this section, we validate the effectiveness of our proposed
key operations (especially for label correlation embedding)
according to visualization results from the qualitative perspec-
tive. We show the class-aware disentangled maps (CADMs)
in Fig. 8 for comparison. Six sampled input images with the
corresponding CADMs are presented in each subfigure. We
select three of the multiple image labels that are apparent to
be observed in the input image. For each category, the left
CADM is generated by vanilla ResNet without disentangling
during training, the middle and right CADMs are generated
with the proposed disentangling step, where the middle map is
generated without our metric learning component (i.e., « = 0
and § = 0), and the right map is generated in cooperation
with proposed metric learning (i.e., @ = 0.5 and g = 0.05).
From these figures, it is clearly observed that utilizing our
label correlation embedding could significantly strengthen the
activations of these relevant labels’ CADMs, e.g., “bus” of
Fig. 8 (a), “handbag” of Fig. 8 (b), “baseball bat” and
“baseball glove” of Fig. 8 (¢), and “tennis racket”
of Fig. 8 (f). It is reasonable to benefit from the recognition of
the labels whose original CADM is weak. In addition, CADMs
without our correlation embedding operation offer no obvious
advantages over vanilla ResNet. Therefore, this consideration
could provide an intuitive and straightforward explanation about
why our model achieves the best multi-label image recognition
accuracy on the three aforementioned benchmark datasets.

V. CONCLUSION

In this paper, we proposed a unified framework for multi-
label image recognition, which was composed of disentangling,
embedding and ranking operations. The disentangling operation
served as the foundation of explicitly modeling label correla-
tions by producing the CADMs. Depending on the label vectors
transformed from CADMSs, the embedding operation pulled
together relevant label vectors and pushed away irrelevant
vectors in a metric learning fashion. The ranking operation
accurately and robustly measured the similarity/dissimilarity
of these label vectors. With only image-level supervision, our
model could be trained in an end-to-end manner. The experi-
mental results on three popular multi-label image recognition
datasets and visualization analysis validated the effectiveness
of the proposed model from both quantitative and qualitative
perspectives. In the future, appropriate handling of the noisy
and missing label problem [65] with our DER model merits
further investigation.
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