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Abstract—Traditional fine-grained image recognition is re-
quired to distinguish different subordinate categories (e.g., birds
species) based on the visual cues beneath raw images. Due to
both small inter-class variations and large intra-class variations,
it is desirable to capture the subtle differences between these
sub-categories, which is crucial but challenging for fine-grained
recognition. Recently, language modality aggregation has been
proved as a successful technique to improve visual recognition
in the experience. In this paper, we introduce an end-to-end
trainable Progressive Mask Attention (PMA) model for fine-
grained recognition by leveraging both visual and language
modalities. Our Bi-Modal PMA model can not only stage-
by-stage capture the most discriminative part in the visual
modality by our mask-based fashion, but also explore the out-
of-visual-domain knowledge from the language modality in an
interactional alignment paradigm. Specifically, at each stage, a
self-attention module is proposed to attend to the key patch
from images or text descriptions. Besides, a query-relational
module is designed to seize the key words/phrases of texts and
further bridge the connection between two modalities. Later, the
learned representations of bi-modality from multiple stages are
aggregated as the final features for recognition. Our Bi-Modal
PMA model only needs raw images and raw text descriptions,
without requiring bounding boxes/part annotations in images
or key word annotations in texts. By conducting comprehensive
experiments on fine-grained benchmark datasets, we demonstrate
that the proposed method achieves superior performance over the
competing baselines, on either vision and language bi-modality
or single visual modality.

Index Terms—Fine-Grained Visual Recognition; Multi-Modal
Analysis; Deep Neural Networks; Language Modality.

I. INTRODUCTION

The task of fine-grained image recognition is to identify the
species of birds [1], flowers[2], cars [3] and aircrafts [4] by
mining the visual cues beneath raw images. It has been applied
in diverse real-world scenarios, e.g., biological protection [5],
[6], vehicle identification [7], product recognition [8] and
so on. Since the subordinate categories are all similar to
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each other, different sub-categories can only be distinguished
by slight and subtle differences, which makes fine-grained
recognition a challenging problem. Compared to the general
object recognition task, fine-grained recognition benefits more
from learning critical parts of objects, which helps discriminate
different sub-categories and align objects of the same sub-
category [9], [10], [11].

In the literature, a number of effective fine-grained image
recognition methods have been developed [12], [6], [11].
However, these methods focus on the vision technologies
for improving classification accuracy, which might be merely
restricted in the single visual modality. Recently, some works,
e.g., [13], [14], [15] of fine-grained recognition attempted to
boost the recognition performance by leveraging bi-modality /
cross-modality analysis. Specifically, except for the traditional
visual modality, [14] simply combined the information of vision
and language streams and obtained a good performance gain.
[13], [15] introduced the knowledge-based information into fine-
grained recognition to enhance fine-grained feature learning.

In this paper, we propose a novel fine-grained method,
termed as Progressive Mask Attention (PMA), which explores
bi-modal analysis for fine-grained recognition. PMA unifies
a progressive mask strategy, which can be friendly applied
in both visual and language modalities simultaneously, which
reveals its flexibility and scalability. Additionally, compared
with the strong supervisions of fine-grained images (e.g.,
bounding boxes and part annotations), text descriptions (like
sentences and phrases) are weak supervisions, and they can also
provide semantics that the visual domain is unable to display.
Moreover, text descriptions can be relatively accurately returned
by ordinary people, rather than the domain experts.

In order to apply our progressive mask strategy to address
fine-grained recognition, we also propose the Bi-Modal Pro-
gressive Mask Attention (Bi-Modal PMA) model. It can seize
crucial information from both visual and text streams. More
specifically, raw images and texts are firstly processed by convo-
lutional neural networks and long-short term memory networks
into the deep visual descriptors and noun phrases embeddings,
respectively. Then, the processed bi-modal representations are
fed into our Bi-Modal PMA to produce a joint-representation.
In our Bi-Modal PMA, a self-attention module is designed
to extract semantics from visual or language modality. By
employing various mask templates, the semantics collected
by self-attention mechanisms can be used to locate key parts
in the visual modality, or capture the out-of-visual-domain
knowledge in the language modality. In addition, a query-
relational module is designed to bridge the connection from
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the key words/phrases of the language modality to the critical
part of the visual modality. Moreover, thanks to the proposed
attention approach, we can align the representations of two
modalities and obtain more discriminative and abundant joint-
features. After that, we can obtain global-level image features,
part-level image representations, global-level text features and
the aligned part-level text representations at the same time.

Beyond that, by introducing our proposed progressive mask
strategy, we can stack multiple PMA modules in a stage-by-
stage way. Our PMA is tailored for fine-grained recognition,
which can attend on a set of distinct and non-overlap parts
progressively. It will significantly boost the final fine-grained
recognition accuracy. Concretely, after PMA outputs the
attended parts of bi-modality at the previous stage, these part
information is treated as the inputs to the following stage. We
propose a mask-based strategy to discard the located part of
objects in vision and filter out the relevant noun phrases of the
located parts in languages simultaneously. Because the most
important image regions and noun phrases are omitted, PMA
at that stage can focus on the secondary important parts of
both vision and language. Under this paradigm, the discarded
regions/phrases will be progressively expanded. Therefore, our
method can work in a multiple-stages fashion iteratively, which
benefits to fine-grained recognition.

In addition, sometimes, we might meet some scenarios
without any text-level data (i.e., single-modality) in the down-
stream tasks. In order to utilize our model in such cases (i.e.,
conducting model inference without textual information), we
further develop a knowledge distillation approach to distill the
generalization ability of our Bi-Modal PMA on bi-modality into
a student model can only deal with image data as inputs. Thanks
to our distiller, our student model is able to make accurate
predictions merely with test images, and almost matches the
accuracy of our model by using both visual and language
modalities.

The major contributions of this paper are as follows:
• We introduce a unified framework, termed as Progressive

Mask Attention, to incorporate discriminative cues of
both visual and language modalities for dealing with the
fine-grained recognition task.

• We specifically devise an attention-based method for
each modality to capture the important object parts
to form part-level representations. Moreover, a stage-
wise mask-based strategy is developed to stack these
attention units. Thus, the whole model can progressively
locate a set of discriminative but different key parts, or
utilize text descriptions to furnish the out-of-visual-domain
knowledge.

• We further develop a knowledge distiller to compress
the knowledge of visual and language modalities into
the object-level model, which allows model to make
predictions using only image data.

• We conduct comprehensive experiments on four fine-
grained benchmark datasets, and our proposed model
achieves superior performance over competing solutions
on either bi-modality or single visual modality.

The rest of our paper is organized as follows: Section II
reviews previous works in fine-grained recognition, multi-

modality analysis and attention mechanism. Section III elabo-
rates the detailed design of our method on visual and language
modalities. Section IV presents our experimental settings, and
Section V reports the results on four public datasets, as well as
ablation studies. Finally, we conclude our work in Section VI.

II. RELATED WORK

In this section, we briefly review the related work about
fine-grained recognition, multi-modality analysis and attention
mechanism.

A. Fine-grained Recognition

Fine-grained recognition [4], [2], [1] is a challenging problem
in computer vision and has recently emerged as a hot topic [16],
[10], [6], [9], [11], [17], [18]. To push a satisfactory fine-
grained classification accuracy, researchers focus on how to
locate the discriminative but subtle object parts, which is the
crucial issue of fine-grained recognition. Specifically, Part-
based R-CNN [19] applied R-CNN [16] for part localization
and used CNNs to extract part representations for predictions.
Pose-Normalized CNN [5] relied on the part annotations to
accomplish the part alignments of the fine-grained objects. Part-
Alignment CNN [10] proposed a concept of co-segmentation
for part alignment. Although the promising results have been
achieved with the help of the human annotations, it is still
expensive and time-consuming to label bounding boxes or
part annotations in large-scale data scenarios. Thus, recently,
researchers attempted to analyze the convolutional response
to explore discriminative representations only with image-
level labels. For example, Bilinear CNN [6] computed the
outer product of the outputs from two feature extractors to
capture localized feature interactions. State-of-the-art methods,
e.g., [20], [21], [22], [23], learned part detectors via an
unsupervised learning fashion. In addition, Region-Attention
CNN [9] introduced an attention proposal network to extract
multi-scale discriminative region features in a coarse-to-fine
recurrent way. Multi-Attention CNN [11] leveraged channel
grouping to attend on multiple discriminative parts and achieved
good classification performance. However, these methods are
restricted in the single visual modality and can not be applied
to the language modality directly, let alone bi-modalities.

B. Multi-modality analysis

Multi-modality analysis, including bi-modality analysis, has
attracted a lot of attentions with the rapid growth of multi-media
data (e.g., image, text, knowledge base, etc). It is studied and
applied in many various computer vision applications [24], [25],
[26], [27], such as image caption, visual question answering
and so on. In fine-grained recognition, it is also used to take
multi-modality information to establish joint-representation
for better classification accuracy [28], [14], [13], [15]. In
addition, compared with other methods using only image cues,
incorporating multi-modality information is able to boost the
recognition performance. Specifically, [28] first collected text
descriptions and introduced a structured joint embedding for
zero-shot image recognition by combining texts and images.
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Figure 1: Detailed architecture of our Bi-Modal PMA module. Figures in the left is our defined components “SAM” and
“QRM”. “�” is the weighted sum operation, “⊕” is the add operation, and δ(·) is the non-linear activation function. The
sub-module “Attend and locate part” means locating the most discriminative part of the feature map according to the maximum
attention weight ai. The red dashed means using the compressed output from the located parts to query language modality, and
zi of the language modality is the vector of phrase embedding. Here, we show four 2 × 2 blocks in that feature map as a
simple and clear example.

[14], [29] combined the vision and language streams for
fine-grained recognition, which achieved a good classification
accuracy. Except for text data, some other work, e.g., [13],
[15], introduced the knowledge-based information into fine-
grained recognition to enhance fine-grained feature learning.
However, previous work merely focused on extracting joint-
representations while ignored the correlations between different
modalities to explore discriminative part features. Aiming at
this point, our method is designed to capture the discriminative
parts of bi-modalities (i.e., key parts of fine-grained objects
and key words of the corresponding text descriptions). More
importantly, our model can also align them in an interactional
way.

C. Attention mechanisms

Recently, attention mechanism is one kind of fundamental
and effective strategy in deep learning, especially in natural
language processing tasks [30], [31] and computer vision
problems [25], [24], [32]. Attention is usually considered to
excavate to what extent the input states will affect model
accuracy. Generally, there existed many diverse attention forms
in the previous work. Attention can be used to model the
dependency among different domains (e.g., source and target
languages, images and texts) [30], [25] . Besides, there also
existed some other work, e.g., [31], abstracting semantic
information from single domains. In this paper, we propose a
unified framework, i.e., bi-modal progressive mask attention,
to perform attentions on both visual and language modalities.
Specifically, a self-attention and a query-based attention method
are developed for capturing crucial cues of images and texts,
respectively. Furthermore, our bi-modal progressive mask
attention can be able to stage-by-stage fuse the information of
two modalities in an interactional way.

III. APPROACH

In this section, we introduce our Bi-Modal Progressive Mask
Attention (Bi-Modal PMA) framework by elaborating its two

key modules, i.e., the visual-based PMA module and language-
based PMA module. Specifically, Bi-Modal PMA is designed
to fuse the information of visual and language modalities
in an interactional way at each stage. While, we use PMA
to iteratively locate the top-tier discriminative parts and the
relevant phrases from bi-modality stage-by-stage. Figure 1
shows us the architecture of our Bi-Modal PMA model.

A. Notations
At the beginning of our introduction, we first give some

pre-defined components which will be used in the following
sections. Figure 1 also illustrates these components.

1) Self-Attention Module (SAM): SAM is a component used
to gather semantic from the single modality. Assume x ∈ Rd

as the input, thus the formulation of SAM is presented by

SAM(x) = W2 · δ(W1 · x), (1)

where W1 ∈ Rd× d
r and W2 ∈ R d

r×1 are learnable matrices,
and r = 16 is a reduction ratio. δ(·) refers to the ReLU [33]
activation function (in visual) or the tanh activation function
(in language), respectively.

2) Query-Relational Module (QRM): QRM is used to es-
tablish the connection between visual and language modalities.
It is able to guide visual feature to query the relevant keys in
language modality. Let denote x ∈ Rd1 as the key vector and
y ∈ Rd2 as the query vector, so the formulation of QRM is as:

QRM(x,y) = y � (Wq · x), (2)

where � represents the dot product and Wq ∈ Rd2×d1 is a
learnable matrix.

3) Mask Template: We assume M = {m1, . . . ,mn} as the
mask template, which will be adopted by our progressive
mask strategy. Here n is consistent with the quantity of
the input vectors and mi ∈ {0,−∞}, where mi is 0 at
initialization during each training step.1 We define the mask

1Since the mask template is added before the softmax function, mi = 0
will let attention model to keep the original weight while mi = −∞ will
force the outputs of attention model as 0.
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template M for visual modality and language modality as
MV = {mv

1, . . . ,m
v
n} and MT = {mt

1, . . . ,m
t
n}, respectively.

Its element will be updated progressively by a stage-by-stage
fashion, and will be elaborated in the following sub-section.

B. Progressive Mask Attention in Visual Modality

Discriminative part localization is a common and core
technique for fine-grained recognition in the visual domain. In
this section, we design a self-attention mechanism to locate
the most discriminative part from the original image. More
importantly, we apply a progressive mask strategy into attention
module to attend on a set of distinct and non-overlap parts
stage-by-stage, while most of the existing attention-based
methods for multiple discriminative part localization are only
focusing on few important parts repeatedly. Specifically, for
each attended stage, we use a mask to discard the located part in
the previous stage. Thus, our PMA can locate discriminative but
distinct parts in different stages. In order to boost fine-grained
recognition performance, we also aggregate the global image
semantic calculated by attention weights and discriminative
part features as the final state of a single stage. In addition, the
feature vector of the discriminative part in the current stage
will be used in the language modality for textual guidance.

1) Input Preparation: Given an image, we use a conventional
CNN to encode it and obtain the outputs from the last
convolutional layer (e.g., conv5_3 in VGG-16). Let it be
X ∈ Rh×w×d. For fine-grained recognition, large image
resolutions could benefit to capture discriminative but subtle
objects’ parts, but will also increase computational burdens
due to the increment of the number of deep descriptors. We
hereby employ an additional 2 × 2 max-pooling operator to
gather more compact information, which can also reduce the
number of final descriptors without affecting subtle details
captured by large resolutions. Meanwhile, the additional
pooling could improve the receptive field of these pooled
descriptors. Thus, we consider X as a set of 2 × 2 blocks,
where X = {x1,x2, . . . ,xn} and n = h×w

4 . xi ∈ R2×2×d

represents the i-th 2 × 2 block containing four d-dimension
deep descriptors. Then, we append a 2× 2 max-pooling on X
to make each feature map contain more compact information.
Thus, the output is denoted as X̃ = {x̃1, x̃2, . . . , x̃n}, where
x̃i = f2×2−maxPool(xi) ∈ R1×1×d is the aggregated local
feature vector. After that, X̃ is used as the input of our attention
module in the visual modality to gather both global-level
information and local-level information (i.e., discriminative
part cues) simultaneously.

2) Visual Representation: Given an image, after the afore-
mentioned preparation, we can obtain X̃ = {x̃1, x̃2, . . . , x̃n}.
Then, we introduce a self-attention and employ the visual mask
template MV as followed to evaluate the attention weight av

i

corresponding to each local feature vector x̃i:

avi =
exp(SAM(x̃i) +mv

i )∑n
j=1 exp(SAM(x̃j) +mv

j )
, (3)

SAM(·) is equal to Eqn. (1) and mv
i is the i-th element of MV .

After that, we calculate the weighted sum of each local feature
vector as the content vector fvglobal =

∑n
i=1 a

v
i x̃i. Then, fvglobal

can be regarded as the representation of the global vision
stream to reflect image-level global visual information.

To further improve the fine-grained recognition accuracy, it
is desirable to find and locate the key object parts which
has the discriminative information to distinguish different
sub-categories. Since the attention weight avi can reflect the
importance of the corresponding part for category predictions,
we can locate key parts according to the scores of these attention
weights. The largest av

i should be the most important one, and
its corresponding 2×2 block xi should be the key part we want
to locate. We denote it as xmax. Based on that, we then employ
1 × 1-conv and global average-pooling operation over xmax

to get a compact part-level feature. We denote that part-level
feature as fvlocal of the local vision stream. Please note that
fvlocal gathers the most representative semantic in the current
visual feature. Also, we will use fvlocal to bridge the connection
to the language modality.

Finally, we concatenate the aforementioned global feature
fvglobal and local feature fvlocal as fvision to form the final
representation in the visual modality:

fvision = [fvglobal; f
v
local], (4)

where [·; ·] denotes the concatenate operation.
3) Progressive Mask Strategy: Based on Eqn. (3), we know

avi can reflect the degree which the block xi should take
attention. For the sake of multiple distinct parts localization,
we design a mask strategy for visual mask template MV to
force the stacked modules to capture different discriminative
visual parts in a stage-by-stage fashion. If we denote the largest
attention weight returned in the current stage as avmax. Then, at
the end of each stage, we will update the elements of the mask
template mv

i as −∞, if avi = avmax. At the following stage,
our attention module will locate another important part on the
basis of the updated mask MV . Benefit from our progressive
mask attention strategy, we capture multiple discriminative
parts without part overlapping.

C. Progressive Mask Attention in Language Modality

Learning to align the text information from the visual
feature, is a frequently-used method in joint-representation
learning across different modalities. To exert the advantages
of language modality in our task, we employ a query-based
attention to seize the relevant fine-grained noun phrases for
each located part. These seized noun phrases can be considered
as a textual representation for the visual domain. However, the
language descriptions usually possess some information while
the raw image can not express. Therefore, we also apply a self-
attention mechanism with a progressive mask strategy to collect
the out-of-visual-domain knowledge from language modality.
Specifically, we discard some relevant noun phrases of the
located part after each querying stage and gather the remaining
phrases to form a global feature. Both the query-based (local)
feature and the global feature will be fused as a final state at
the current stage.

1) Input Preparation: Given the raw texts T describing
the characteristics of the fine-grained objects in an image,
we first adopt a sequence of commonly-used techniques in
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Figure 2: Overall framework of the proposed Bi-Modal Progressive Mask Attention model (with three stages) for fine-grained
recognition. Raw images and texts are the original inputs. After CNN feature extraction of visual modality and noun phrase
extraction of language modality, the processed bi-modal representations are fed into our Bi-Modal PMA module at the first
stage. In visual-based PMA, it can locate the most discriminative part of images in that stage. Furthermore, a query-based
attention approach is developed to align the information from both vision and language. Later, by employing the progressive
mask strategy, we can stack multiple PMA modules corresponding to multiple processing stages. The mask-based approach in
PMA is able to iteratively capture different discriminative parts and out-of-visual-domain knowledge in a stage-by-stage fashion.

natural language processing [34] (i.e., word tokenization,
part-of-speech tagging and noun phrase chunking) to extract
noun phrases from T. For each noun phrase, we use word
embeddings and long-short term memory (LSTM) [35] to
extract phrase-level embeddings. We denote these phrase
embeddings as Z = {z1, z2, . . . ,zp}, where p is the number of
noun phrases and zi ∈ Rd is the vector of phrase embeddings.
Therefore, Z is adopted to generate local-level and global-level
textual semantic from our attention module in the language
modality.

2) Language Representation: For the located part-level fea-
ture fvlocal and the transformed phrase embedding Z, we design
a query-based attention mechanism with text mask template
MT for language modality to generate its corresponding text
representation. The attention weight ati for each noun phrase
is calculated as:

ati =
exp(QRM(fvlocal, zi) +mt

i)∑m
j=1 exp(QRM(fvlocal, zi) +mt

i)
, (5)

where QRM(·, ·) is equal to Eqn. (2) and mt
i is the i-th element

of MT . We form the content vector as f tlocal =
∑p

i=1 a
t
izi.

More importantly, f tlocal can be considered as a local language
stream, which aggregates the most typical textual semantic
for the current visual outputs.

Beside the text features guided by the located part feature,
we also want to mine some textual knowledge beyond the
visual domain. Therefore, we discard phrases which are
highly relevant to the located part and employ a self-attention
mechanism over the remaining phrases to generate a textual

representation, which gathers the out-of-visual-domain feature.
The attention weight ãti for each phrase is:

ãti =
exp(SAM(zi) +mt

i)∑m
j=1 exp(SAM(zi) +mt

i)
, (6)

where SAM(·) is equal to Eqn. (1). We calculate the weighted
sum of each noun phrase as the content vector f tglobal =∑p

i=1 ã
t
izi. Thus, f tglobal is regarded as the global language

stream to collect the information which is out of visual domain.
Finally, we concatenate the global feature f tglobal and local

feature f tlocal as ftext to form the final representation in the
language modality:

ftext = [f tglobal; f
t
local]. (7)

3) Progressive Mask Strategy: Based on Eqn. (5), ati reflects
the relevance of the phrase zi to the located part feature. As
we expect to seize more textual descriptors which may not
exist in the image, a mask strategy is designed for text mask
template MT to enforce the subsequent stage to explore more
out-of-visual-domain features. After the query-based attention
in the local stream (language modality), we update the element
mt

i as −∞ as its weight ati is ranked in top-three and higher
than 1/p. Please note, this mask strategy will be operated
once the local stream is done at the current stage. Benefit
from our progressive mask strategy, we can collect the text
representation which in visual domain and out of visual domain
simultaneously.
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D. Stage-wise feature aggregation
As aforementioned, we respectively design two Progressive

Mask Attention modules for visual and language modalities,
where one is for key part localization and another is to seize
key words of text. For each stage, we concatenate visual and
text representation as the final output. After that, we append
a shared fully connected layer after each stage outputs for
dimensionality reduction:

f ifinal = FC
(
[f ivisual; f

i
text]

)
, (8)

where [·; ·] represents concatenation and FC(·) denotes a
fully connected layer. To exert the advantages of multi-stages
ensemble, we also aggregate these output states as a final
representation for predictions. Here we restrict the number of
stages as three in our method. First, we extract the object-level
representation fobject by conducting global average-pooling
over the feature map X to obtain image-level visual information.
Then, we concatenate object-level representation and the output
of multiple stages to form the final representation F:

F = [fobject; f
1
final; f

2
final; f

3
final]. (9)

Here, we use three stages for an example. After that, a fully
connected layer with the softmax function is appended upon
the final representation F to conduct final classification. The
traditional cross-entropy loss is used to drive the whole network
training, and our model can be end-to-end trainable. Figure 2
shows the whole framework of our Bi-Modal Progressive Mask
Attention model in multi-stages.

E. Knowledge Distillation for Bi-Modal PMA
To support our bi-modality model to predict in the single-

modality environment (e.g., only using image data), we further
perform a knowledge distillation approach [36] to compress
the knowledge of both visual and language modalities into the
student model. Here, we use the Bi-Modal PMA model as the
teacher model, and a standard network (i.e., only adopting the
original image as inputs) as the student model.

For the teacher model, we define the training corpus as
(si, yi) ∈ {S,Y}, where si means a pair of image and text
data, and yi is the ground truth. We use standard cross-entropy
as the loss function for our model as:

Lteacher(Y|S; θT ) =
N∑
i=1

C∑
j=1

1{yi = j} logP (yi|si; θT ),

(10)
where N and C is the number of training samples and classes,
and θT is the parameter of our teacher model (i.e., the Bi-Modal
PMA model).

For the student model, we define the training corpus as
(ti, yi) ∈ {T ,Y}, where ti is the image data. Instead of using
the ground truth of images for prediction, our distiller enforces
the student model to learn the output probability P (yi|si; θT ) of
the teacher model. Therefore, the loss function for knowledge
distillation can be formulated by

Lstudent(Y|T ; θS) =
N∑
i=1

C∑
j=1

P (j|si; θT ) · logP (j|ti; θS),

(11)

Table I: Characteristics of datasets used in experiments.

Dataset ] category ] training ] test Texts?
CUB-200-2011 [1] 200 5,994 5,794 X
Oxford Flower [2] 102 2,000 6,149 X
FGVC Aircraft [4] 100 6,667 3,333
Stanford Car [3] 196 8,144 8,041

where θS is the parameter of the student model. Based on
Eqn. (11), we can distill the knowledge from two modalities
into the visual modality, and thus allows the model be able to
return predictions even without text data during inference.

IV. EXPERIMENTS SETTING

In this section, we will introduce the datasets, empirical
setting and the comparison baseline methods.

A. Datasets

We conduct experiments on four widely used fine-grained
benchmark datasets, i.e., CUB-200-2011 [1], Oxford Flower [2],
FGVC Aircraft [4] and Stanford Car [3]. The detailed infor-
mation of each dataset is described in Table I. Among them,
CUB-200-2011 and Oxford Flower provide text descriptions2 of
the language modality for each image. While, FGVC Aircraft
and Stanford Car only contain raw images from the single
visual modality without text descriptions.

B. Implementation details

To make a fair comparison, we choose VGG-16 [46] as the
base model in the visual modality for obtaining the image-
level feature. A pre-trained VGG-16 network on ImageNet [47]
is used for parameter initializations. In addition, for final
classification, we employ a dropout layer [48] with the 0.5
ratio before the fully connected layer. Stochastic gradient
descent with a mini-batch size of 32 is performed as the
optimizer. The models are trained in totally 100 epochs, and
the learning rate starts from 0.005 and is divided by 10 at
the 30th and 60th epoch. The weight decay is set to 10−4

and the momentum is set to 0.9. Following the previous
strategy [6] in data augmentation, we conduct horizontal flips
and random crop image patches as the 448× 448 resolution
from the original image. For text preprocessing, we extract noun
phrases from text descriptions via the following stages [34]:
word tokenization, part-of-speech tagging and noun-phrase
chunking. We embed the word of each phrase and feed them
into two-stacked 512-dimensional LSTM layers to get phrase
embeddings. The word embedding is initialized as a 300-
dimensions vector based on Glove 6B corpus [49]. Besides,
to further explore recognition performance of our model, we
conduct experiments with ResNet-50 [50] as the base model.

C. Comparison methods

To demonstrate the advantages of our model, we list the
following baselines for comparisons:

2https://github.com/reedscot/cvpr2016
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Table II: Comparison results on the CUB-200-2011 dataset. “Train/Test Anno.” column means whether using bounding boxes
or part annotations in the training or test phase. “One-stage” means whether the training stage can be accomplished in one-stage.
“Modality” column represents whether using additional information.

Methods Base model Train Anno. Test Anno. One-stage Modality Accuracy
PA-CNN [10] AlexNet X X X 82.8
MG-CNN [20] VGG-19 X 83.0

SPDA-CNN [37] AlexNet X X X 85.1
PN-CNN [5] AlexNet X 85.4
TLAN [38] AlexNet 77.9
NAC [39] VGG-19 X 81.0

B-CNN [6] VGG-16 X 84.1
STN [12] GoogLeNet 84.1

RA-CNN [9] VGG-19 85.3
WARN [40] Wide ResNet X 85.8
OPAM [41] VGG-16 85.8
MoNet [42] VGG-16 X 86.4

MA-CNN [11] VGG-19 X 86.5
M2DRL [43] VGG-16 87.2

DCL [44] ResNet 87.8
TASN [45] ResNet 87.9
CVL [14] VGG-16 X + Text 85.5

T-CNN [15] ResNet X + Knowledge-Base 85.8
KERL [13] VGG-16 X + Knowledge-Base 86.3

TA-FGVC [29] ResNet + Text 86.9
TA-FGVC [29] ResNet X + Text 88.1

Baseline (VGG-16) VGG-16 X 78.9
Ours VGG-16 X 86.8
Ours VGG-16 X + Text 88.2

Baseline (ResNet-50) ResNet-50 X 84.5
Ours ResNet-50 X 87.5
Ours ResNet-50 X + Text 88.7

• PA-CNN [10]: a Part Alignment-based method which
generates part via co-segmentation and alignment.

• MG-CNN [20]: learning multiple regions by Multiple-
Granularity CNN for all the grain levels.

• SPDA-CNN [37]: a unified framework utilizes Semantic
Part Detection and Abstraction.

• PN-CNN [5]: a Pose Normalized CNN to produce local
feature from object’s pose.

• TLAN [38]: Two-Level Attention Network on object and
part domain for classification.

• NAC [39]: Neural Activation Constellation for unsupervised
part discovery.

• B-CNN [6]: a Bilinear-CNN layer to model local pairwise
feature interactions.

• STN [12]: a Spatial-Transformer Network to adaptively learn
features in various transformed space.

• RA-CNN [9]: Recurrent-Attention Network to locate dis-
criminative parts recurrently.

• WARN [40]: a gate attention mechanism for attend and
rectify global and local features.

• OPAM [41]: an Object-Part Attention Model for fine-grained
recognition.

• MoNet [42]: a framework unify G2DeNet and bilinear
pooling CNN from Moment Matrix to combine the compact
representation.

• MA-CNN [11]: Multi-Attention CNN to extract multiple
discriminative parts.

• M2DRL [43]: a Multi-scale and Multi-granularity Deep
Reinforcement Learning approach.

• DCL [44]: a model with Destruction and Construction
Learning.

• TASN [45]: a Trilinear Attention Sampling Network for
fine-grained image recognition.

• CVL [14]: an approach Combines Visual and Language
stream for performance boosting.

• T-CNN [15]: a CNN framework extract embedding from
knowledge and text domain.

• KERL [13]: a method incorporates Knowledge-Embedded
Representation Learning into fine-grained recognition.

• TA-FGVC [29]: a Text-Assisted Fine-Grained Visual Clas-
sification method.

V. EXPERIMENTAL RESULTS

In the following, we show our classification results on four
public datasets, as well as the ablation studies for analyzing
and validating the effectiveness of our model designs.

A. Results

1) CUB-200-2011: The classification results of Caltech-
UCSD birds are reported in Table II. We compare the accuracy
of state-of-the-art fine-grained recognition methods with ours.
As reported in that table, our model achieves 86.8% accuracy on
VGG-16, which is slightly higher than the competing baselines.
But, after equipped with the language modality, our VGG-
based modal achieves 88.2% classification accuracy, which
significantly outperforms other state-of-the-arts. By using a
strong base model (ResNet-50), the accuracy obtains a further
improvement and gets the 87.5% on single visual modality and
88.7% accuracy on bi-modality, which is the best classification
accuracy on CUB-200-2011.
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Table III: Comparison results on the Oxford flower dataset.

Methods Accuracy
SDR [51] 90.5

Deep optimized [51] 91.3
RIIR [52] 94.0
NAC [39] 95.3
PBC [53] 96.1

Ours (VGG-16) 96.9
Ours (VGG-16 + Text) 97.4

Table IV: Comparison results on the FGVC Aircraft dataset.
“Anno.” column means whether using bounding boxes/part
annotations.

Method Anno. Accuracy
MG-CNN [20] X 86.6
MDTP [54] X 88.4
B-CNN [6] 84.1
KP [55] 86.9
RA-CNN [9] 88.2
MA-CNN [11] 89.9
HBP [56] 90.3
Ours (VGG-16) 90.4
Ours (ResNet-50) 90.8

2) Oxford Flower: The results of Oxford Flower are reported
in Table III. Our method achieves 97.4% accuracy on bi-
modality, which has surpassed most of the reported results
by 1.0%-6.6% accuracy. On the single visual modality, the
obtained 96.9% classification accuracy is still significantly
higher than the accuracy of previous work in the literature.
These large marginal improvements validate the effectiveness
of our attention approach in discriminative part learning and
bi-modal joint-representation learning.

3) FGVC Aircraft: The results of FGVC Aircraft are re-
ported in Table IV. Our method achieves 90.2% accuracy, which
is also superior to other state-of-the-art systems. MDTP [54]
are an advanced system which adopted human annotations.
However, our method could brings a 2.0% relative improvement
than MDTP [54] and does not use any annotations. MA-
CNN [11] achieved 89.9% accuracy. Our PMA exceeds it by
0.5% accuracy. B-CNN [6] is a common method in fine-grained
recognition with 84.1% accuracy, and KP [55] and HBP [56]
are the improved methods based on B-CNN [6]. Nevertheless,
our method is still superior to KP [55] and HBP [56]. In
addition, when using ResNet-50 as the base model, our method
can achieve 90.8% accuracy, which receives a 0.4% additional
accuracy gain than VGG-based one. It further surpasses other
previous fine-grained recognition models.

4) Stanford Car: The results of Stanford Car are reported in
Table V. Our method achieves 93.0% accuracy which is also the
best result over the competing baseline methods. The baseline
of VGG-16 achieved 79.8% accuracy and our method surpasses
the baseline by 13.2% accuracy gain. PA-CNN [10] and MA-
CNN [11] are advanced fine-grained recognition systems which
uses part annotations and disables annotations, respectively.
Although promising results has been achieved by them, our
method can still give a 0.3% accuracy gain comparing with
PA-CNN [10] and MA-CNN [11]. Besides, our Bi-Modal PMA
based on ResNet-50 can achieve 93.1% accuracy.

Table V: Comparison results on the Stanford Car dataset.
“Anno.” column means whether using bounding boxes/part
annotations.

Method Anno. Accuracy
Part R-CNN [19] X 88.4
FCAN [57] X 91.3
PA-CNN [10] X 92.8
VGG-16 79.8
ResNet-50 84.7
WARN [40] 90.0
B-CNN [6] 91.3
RA-CNN [9] 92.5
MA-CNN [11] 92.8
Ours (VGG-16) 93.0
Ours (ResNet-50) 93.1

Table VI: Results of knowledge distillation on CUB-200-2011
(ResNet-50) and Oxford Flower (VGG-16). Please note that
“Student model” means the network only deals with image data
during inference.

Method CUB-200-2011 Oxford flower
Teacher model (Bi-Modal PMA) 88.7 97.4
Student model 88.3 96.9

B. Knowledge Distillation

We conduct experiments on CUB-200-2011 and Oxford
Flower datasets to evaluate the performance of knowledge dis-
tillation (i.e., without using text information during inference)
for our Bi-Modal PMA model. The results are displayed in
Table VI. As can be seen, based on our distiller, our student
model can achieve 88.3% and 96.9% accuracy on CUB-200-
2011 and Oxford flower datasets respectively, which are slightly
better than previous approaches even with only image-level
data in the test phase. These observations show the potentiality
to distill the knowledge of two modalities and also reveal
the generalization ability of our Bi-Modal PMA in utilizing
different modalities for feature learning.

C. Ablation studies

1) Effects of the number of learning stages: To further
explore the effectiveness of our approach, we also conduct
quantitative comparisons about our PMA model. We change
the number of learning stages of our proposed model from 1 to
4 to perform comparisons. The results are reported in Table VII.
As seen, we set the maximum number of the learning stage as
4, since our model does not receive further benefits with more
stages. We argue this phenomenon might be possibly caused
by overfitting. On CUB-200-2011, supposing that contains
object-level information, our model achieves 85.9%, 86.5%
and 86.8% accuracy when using 1, 2 and 3 stages, respectively.
By increasing the number of learning stages, the classification
performance of our model will receive consecutive gains by
0.6% and 0.3%. When disabling object-level information, our
model gets 83.0%, 84.3% and 84.7% accuracy. When using
the language information and object information, our approach
receives 87.4%, 88.0% and 88.2% accuracy. We also further
conduct experiments on Stanford Car. The results also indicates
that our model achieves the best accuracy 93.0% with three
learning stages, which is consistent with our conclusion on
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Table VII: Ablation studies about the number of learning stages
of our model on CUB-200-2011 (VGG-16) and Stanford Car
(VGG-16). “+o/-o” in brackets means using/disabling object-
level information which refers to the feature fobject extracted
by conducting GAP on the feature maps. cf. Eqn. (9). “+t”
means using text information of the language modality.

] stages Acc. (-o) Acc. (+o) Acc. (+o/+t)
CUB-200-2011

1 83.0 85.9 87.4
2 84.3 86.5 88.0
3 84.7 86.8 88.2
4 84.5 86.5 88.1

Stanford Car
1 84.2 88.9 –
2 86.8 92.0 –
3 88.6 93.0 –
4 88.7 92.9 –

Table VIII: Ablation studies about the individual accuracy of
each learning stage in our model on CUB-200-2011 (VGG-16)
and Stanford Car (VGG-16).

] stage Acc. (-o) Acc. (+o) Acc. (+o/+t)
CUB-200-2011

1 83.0 85.9 87.4
2 81.9 85.4 86.8
3 79.5 84.8 85.9

Stanford Car
1 84.2 88.9 –
2 83.1 88.2 –
3 81.0 86.9 –

CUB-200-2011. These quantitative comparisons with different
conditions also satisfy the conclusion on experiments with
object-level information. These incremental improvements also
demonstrate the necessity of each learning stage for our model.

2) Classification accuracy of each learning stage: To better
verify the contributions of each learning stage, we also test
the accuracy by only using the outputs of each learning stage
separately. The results are reported in Table VIII. We observe
that the first learning stage achieves the best performance, and
the accuracy will gradually decrease for the latter learning
stages. We deem that the front stage always captures the
most discriminative cues for classification, and the following
stage will extract the less discriminative information which the
previous stages do not attend. Meanwhile, by taking the results
of Table VII into consideration, it can reveal that our model
indeed captures discriminative but complementary information
in the stage-by-stage manner. These observations are also
consistent with the motivation of our progressive attention
proposal.

3) Effects of the number of parts in each learning stage:
In the ablation studies of this section, we attempt to predict
multiple parts in a single stage for comparisons. We design two
contrast experiments, where one is only using one stage and
another uses three stages. Each stage in our ablation studies
will predict multiple (three) parts. The results are shown in
Table IX. We find that the model, which uses only one stage
to predict three parts, will decrease 0.3%-0.5% accuracy on
CUB-200-2011 and Stanford Car. It might caused by that, for
a single stage, the attention model usually seizes the most

Table IX: Ablation studies of predicting different number of
parts in each learning stage. Results are reported on CUB-
200-2011 (VGG-16) and Standford Car (VGG-16). “] stages”
means how many stages are used for prediction and “] parts”
means how many regions are predicted in a single stage. “]
stages=3” with “] parts=1” is our proposal’s setting.

] stages ] parts CUB-200-2011 Stanford Car
3 1 86.8 93.0
1 3 86.3 92.7
3 3 85.7 92.1

Table X: Ablation studies about the effect of different streams
for classification accuracy on CUB-200-2011 (VGG-16) and
Stanford Car (VGG-16). The meaning of global/local vision
or language streams can refer to Figure 1.

Model settings CUB-200-2011 Stanford Car
Only global vision stream 85.6 91.5
Only local vision stream 49.8 57.5

Both global & local vision streams 86.8 93.0
Only local language stream 59.3 –

Only global language stream 55.7 –
Both global & local language streams 63.2 –

discriminative part but ignores some inconspicuous parts. That
means, except for the most discriminative part, the attention
model disables to discover additional parts effectively in a
single stage. Moreover, we find that if three learning stages all
predict three parts, it will harm a lot accuracy by 0.9%-1.1%.
We guess the reason might be that choosing too many parts will
confuse the model to discover which part is critical. Overall,
these comparisons prove that using three stages and selecting
one part in each single stage are optimal for classification
accuracy.

4) Effects of different streams: In order to survey the
necessity of global/local vision and language streams in PMA,
we conduct a series of ablation experiments to analyze the
effect of different streams. The results are reported in Table X.

For vision streams, we find that the model without global
vision stream works quite badly. While global vision stream
is available, the model can obtain 85.6%/91.8% accuracy in
Bird/Car tasks. Equipped with both local vision stream (part-
level) and global vision stream (object-level) simultaneously,
it receives 1.2%/1.5% additional accuracy gains respectively.
These comparisons indicate that the global vision stream is es-
sential and local vision stream evidently boost the classification
accuracy.

For language streams, we find that the model only using
local language stream outperforms using global language
stream by 3.6% accuracy gains. When integrating both local
language stream and global language stream, it achieves 63.2%
accuracy, which is superior to any single language stream.
These comparisons indicate that local language stream gathers
more text representation from salient parts and global language
stream provide additional textual features for boosting accuracy.

In summary, each global/local stream in the visual or
language modality is indispensable for our model.
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Figure 3: Visualization of the attended parts in images and the highlighted key words in texts of different learning stages. For
visual modality, we visualize the attention weights on the original images. For the language modality, several key words are
attended at each stage. Here, we highlight them with different background colors according to the attention weights from high
(white) to low (dark) in both local (left column) and global (right column) language streams.

(I) Stage 1 (II) Stage 2 (III) Stage 3

(a) Aston Martin V8 Vantage Convertible 2012
(I) Stage 1 (II) Stage 2 (III) Stage 3

(b) Audi S6 Sedan 2011

(I) Stage 1 (II) Stage 2 (III) Stage 3

(c) Cadillac Escalade EXT Crew Cab 2007
(I) Stage 1 (II) Stage 2 (III) Stage 3

(d) Dodge Dakota Club Cab 2007
Figure 4: Visualization of the attended parts in images in different learning stages on Stanford Car.

(I) Stage 1 (II) Stage 2 (III) Stage 3

(a) Boeing 737-600
(I) Stage 1 (II) Stage 2 (III) Stage 3

(b) Boeing 767-200

(I) Stage 1 (II) Stage 2 (III) Stage 3

(c) A340-300
(I) Stage 1 (II) Stage 2 (III) Stage 3

(d) Yak-42
Figure 5: Visualization of the attended parts in images in different learning stages on FGVC Aircraft.
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D. Visualization

Figure 3 shows the visualization of the attended part in
raw images and texts (i.e., noun phrases) in different learning
stages. For the visual modality, we visualize the attention
weights over the original images based on Eqn. (3). For
the language modality, we visualize the attention weights of
global/local streams on each key phrase based on Eqn. (5) and
Eqn. (6). For the visual modality, it is clear to observe that
at different stages, our model is able to: a) attend subtle but
discriminative parts of fine-grained objects; b) locate different
parts of objects with the help of our progressive mask attention
strategy. For the language modality, we can find: a) the key
words automatically seized by local language stream can be
aligned with the corresponding image regions at each stage; b)
the key words, which are low correlated with the image regions,
will be activated in the global language streams, especially
in the third stage. Besides, the visualization in image domain
of Stanford Car and FGVC Aircraft are reported in Figure 4
and Figure 5. We find the attention visualization in these two
datasets can also find different discriminative parts, which also
satisfies our targets. The visualization results can validate the
effectiveness of our proposed PMA in bi-modality from the
qualitative perspective.

VI. CONCLUSION

In this paper, we proposed the Bi-Modal Progressive Mask
Attention (Bi-Modal PMA) model for fine-grained recognition.
Specifically, Bi-Modal PMA is a unified framework to incor-
porate information from both visual and language modalities.
By our mask-based progressive strategy, our model can learn
and capture a set of discriminative image regions of images
and key words in texts in a stage-by-stage way. Furthermore,
our Bi-Modal PMA can also extract the knowledge which is
complementary to the visual modality. Experimental results of
four benchmark fine-grained datasets validated the effectiveness
of our proposed PMA model. In the future, we expect to explore
the possibility of incorporating more modalities’ information,
like attributes, to further boost the fine-grained recognition
accuracy.
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