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Reusable model design becomes desirable with the rapid expansion of computer vision and pattern recog-
nition applications. In this paper, we focus on the reusability of pre-trained deep convolutional models.
Specifically, different from treating pre-trained models as feature extractors, we reveal more treasures
beneath convolutional layers, i.e., the convolutional activations could act as a detector for the common
object in the object co-localization problem. We propose a simple yet effective method, termed Deep
Descriptor Transformation (DDT), for evaluating the correlations of descriptors and then obtaining the
category-consistent regions, which can accurately locate the common object in a set of unlabeled images,
i.e., object co-localization. Empirical studies validate the effectiveness of the proposed DDT method. On
benchmark object co-localization datasets, DDT consistently outperforms existing state-of-the-art meth-
ods by a large margin. Moreover, DDT also demonstrates good generalization ability for unseen categories
and robustness for dealing with noisy data. Beyond those, DDT can be also employed for harvesting web
images into valid external data sources for improving performance of both image recognition and object

detection.

© 2018 Published by Elsevier Ltd.

1. Introduction

Model reuse [1] attempts to construct a model by utilizing ex-
isting available models, mostly trained for other tasks, rather than
building a model from scratch. Particularly in deep learning, since
deep convolutional neural networks have achieved great success in
various tasks involving images, videos, texts and more, there are
several studies have the flavor of reusing deep models pre-trained
on ImageNet [2].

In pattern recognition and computer vision, pre-trained mod-
els on ImageNet have been successfully adopted to various usages,
e.g., as universal feature extractors [3-6], object proposal genera-
tors [7], etc. In particular, [8] proposed the SCDA (Selective Con-
volutional Descriptor Aggregation) method to utilize pre-trained
models for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained im-
ages of the same classes/species in an unsupervised fashion.
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Wu), chunhua.shen@adelaide.edu.au (C. Shen).
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In this paper, we reveal that the convolutional activations
can be used as a detector for the common object in object co-
localization. Object co-localization is a fundamental computer vi-
sion problem, which simultaneously localizes objects of the same
category across a set of distinct images. Specifically, we propose
a simple but effective method termed Deep Descriptor Transfor-
mation (DDT) for object co-localization. In DDT, the deep convo-
lutional descriptors extracted from pre-trained deep convolutional
models are transformed into a new space, where it can evaluate
the correlations between these descriptors. By leveraging the cor-
relations among images in the image set, the common object in-
side these images can be located automatically without additional
supervision signals. The pipeline of DDT is shown in Fig. 1. In gen-
eral, our DDT could demonstrate the possibility of convolutional
activations/descriptors in pre-trained models being able to act as a
detector for the common object.

Experimental results show that DDT significantly outperforms
existing state-of-the-art methods, including object co-localization
and weakly supervised object localization, in both the deep learn-
ing and hand-crafted feature scenarios. Besides, we empirically
show that DDT has a good generalization ability for unseen im-
ages apart from ImageNet. More importantly, the proposed method
is robust, because DDT can also detect the noisy images which
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Fig. 1. Pipeline of the proposed DDT method for object co-localization. In this in-
stance, the goal is to localize the airplane within each image. Note that, there might
be few noisy images in the image set. (Best viewed in color.).

do not contain the common object. Thanks to the advantages of
DDT, our method could be used as a tool to harvest easy-to-obtain
but noisy web images. We can employ DDT to remove noisy im-
ages from webly datasets for improving image recognition accu-
racy. Moreover, it can be also utilized to supply object bounding
boxes of web images. Then, we use these images with automati-
cally labeled object boxes as valid external data sources to enhance
object detection performance.
Our main contributions are as follows:

1. We propose a simple yet effective method, i.e., Deep Descrip-
tor Transformation, for unsupervised object discovery and ob-
ject co-localization. Besides, DDT reveals another probability
of deep pre-trained network reusing, i.e., convolutional activa-
tions/descriptors can play a role as a common object detector.

2. The co-localization process of DDT is both effective and ef-
ficient, which does not require image labels, negative im-
ages or redundant object proposals. DDT consistently outper-
forms state-of-the-arts of object co-localization methods and
weakly supervised object localization methods. With the en-
semble of multiple CNN layers, DDT could further improve its
co-localization performance.

3. DDT has a good generalization ability for unseen categories and
robustness for dealing with noisy data. Thanks to these advan-
tages, DDT can be employed beyond the narrow co-localization
task. Specifically, it can be used as a generalized tool for ex-
ploiting noisy but free web images. By removing noisy images
and automatically supplying object bounding boxes, these web
images processed by DDT could become valid external data
sources for improving both recognition and detection perfor-
mance. We thus provide a very useful tool for automatically
annotating images. The effectiveness of DDT augmentation on
recognition and detection is validated in Section 4.6.

4, Based on the previous point, we also collect an object detection
dataset from web images, named WebVOC.% It shares the same
20 categories as the PASCAL VOC dataset [9], and has a similar
dataset scale (10k images) comparing with PASCAL VOC. We also
release the WebVOC dataset with the automatically generated
bounding boxes by DDT for further study.

This paper is extended based on our preliminary work [10].
Comparing with it, we now further introduce the multiple layer
ensemble strategy for improving co-localization performance, pro-
vide DDT augmentation for handling web images, apply the pro-
posed method on webly-supervised learning tasks (i.e., both recog-
nition and detection), and supply our DDT based webly object de-
tection dataset.

The remainder of the paper is organized as follows. In Section 2,
we briefly review related literature of CNN model reuse, ob-
ject co-localization and webly-supervised learning. In Section 3,
we introduce our proposed method (DDT and its variant DDT™).
Section 4 reports the object co-localization results and the re-
sults of webly-supervised learning tasks. We conclude the paper
in Section 5 finally.

2. Related work

We briefly review three lines of related work: model reuse
of CNNs, research on object co-localization and webly-supervised
learning.

2.1. CNN model reuse

Reusability has been emphasized by [1] as a crucial character-
istic of the new concept of learnware. It would be ideal if mod-
els can be reused in scenarios that are very different from their
original training scenarios. Particularly, with the breakthrough in
image classification using Convolutional Neural Networks (CNN),
pre-trained CNN models trained for one task (e.g., recognition)
have also been applied to domains different from their original
purposes (e.g., for describing texture [5] or finding object pro-
posals [7]). Meanwhile, several works reveal that deep CNN mod-
els designed for classification can emerge object detectors [11,12].
However, for such adaptations of pre-trained models, they still re-
quire further annotations in the new domain (e.g., image labels).
While, DDT deals with the object co-localization problem in a set-
ting whose only assumption is these images contain one common
object, rather than requiring image labels.

Coincidentally, several recent works also shed lights on CNN
pre-trained model reuse in the unsupervised setting, e.g., SCDA
(Selective Convolutional Descriptor Aggregation) [8]. SCDA is pro-
posed for handling the fine-grained image retrieval task, where
it uses pre-trained models (from ImageNet) to locate main ob-
jects in fine-grained images. It is the most related work to ours,
even though SCDA is not for object co-localization. Different from
our DDT, SCDA assumes only an object of interest in each image,
and meanwhile objects from other categories does not exist. Thus,
SCDA locates the object using cues from this single image assump-
tion. Clearly, it can not work well for images containing diverse ob-
jects (cf. Table 2 and Table 3), and also can not handle data noise
(cf. Section 4.5).

2.2. Object co-localization

Object co-localization [13-16], is a fundamental problem in
pattern recognition and computer vision, where it needs to dis-

2 Qur WebVOC dataset and the source codes of DDT are both released via: http:
//lamda.nju.edu.cn/weixs/project/DDT/DDT.html.


http://lamda.nju.edu.cn/weixs/project/DDT/DDT.html

X.-S. Wei, C.-L. Zhang and J. Wu et al./ Pattern Recognition 88 (2019) 113-126 115

SCDA

DDT

SCDA
e

DDT SCDA

150 400
150
160 300 150 600
200 100 400 100
50
100 50 200 50
0
1 0 0

0 05 1 0-1 0
(1) Aeroplane
SCDA DDT

600 100 300 40 300
400 200 200
200 50 100 20 100
g 1 D" 00 1 u-l
(4) Boat (5) Bottle
SCDA

SCDA DDT

RALED LI
A AT

0

w o 60 150
. ol 40 100
': p |20 50
(9) Chair
SCDA DDT

300

200

100

0

s o6 on 14

o

o o2 o0+ 05 o8

(11) Diningtable
DDT

SCDA

(13) Horse

" (17) Sheep

5 14
(16) Plant

" (18) Soja

05 1 -1 0
(14) Motorbike

DDT

w(,ZOV) VTVM

05 1 O-t
(19) Train

Fig. 2. Examples of twenty categories from the PASCAL VOC 2007 dataset [9]. The first column of each sub-figure is produced by SCDA, the second column is by our DDT.
The red vertical lines in the histogram plots indicate the corresponding thresholds for localizing objects. The selected regions in images are highlighted in red. (Best viewed
in color and zoomed in.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

cover the common object emerging in only positive sets of ex-
ample images (without any negative examples or further supervi-
sions). Object co-localization shares some similarities with image
co-segmentation [17-19]. Instead of generating a precise segmen-
tation of the related objects in each image, co-localization methods
aim to return a bounding box around the object. Moreover, it also
allows us to extract rich features from within the boxes to com-
pare across images, which has shown to be very helpful for detec-
tion [20].

Additionally, co-localization is also related to weakly supervised
object localization (WSOL) [21-25]. But the key difference be-
tween them is that WSOL requires manually-labeled negative im-
ages whereas co-localization does not. Thus, WSOL methods could
achieve better localization performance than co-localization meth-
ods. However, our proposed methods perform comparably with
most state-of-the-art WSOL methods (cf. Table 4).

In the literature, some representative co-localization meth-
ods are based on low-level visual cues and optimization algo-
rithms[20]. formulates co-localization as a boolean constrained
quadratic program which can be relaxed to a convex problem.
Then, it is further accelerated by the Frank-Wolfe algorithm [26].
After that, [14] proposes a Probabilistic Hough Matching algorithm
to match object proposals across images and then dominant ob-
jects are localized by selecting proposals based on matching scores.

Recently, there also emerge several co-localization methods
based on pre-trained deep convolutional models, e.g., [6,24]. Un-
fortunately, these methods just treat pre-trained models as simple
feature extractors to extract the fully connected representations,
which do not sufficiently mine the treasures beneath the convolu-
tional layers (i.e., leveraging the original correlations between deep
descriptors among convolutional layers). Moreover, these methods
also require object proposals as a part of their object discovery,
which not only made them highly depend on the quality of object
proposals, but may lead to huge computational costs. In addition,
many previous co-localization methods can not handle noisy data,
except for [20].

Compared to the previous work, DDT works without requiring
bounding boxes, additional image labels or redundant object pro-
posals. Images only need one forward run through a pre-trained
model. Then, efficient deep descriptor transformation is employed
for obtaining the category-consistent image regions. DDT is very
easy to implement, and surprisingly has good generalization abil-
ity and robustness. Furthermore, DDT can be used a valid data aug-
mentation tool for handling noisy but free web images.

2.3. Webly-supervised learning

Recent development of deep CNNs has led to great success in a
variety of computer vision tasks. This success is largely driven by
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(e) Horse

Fig. 3. Examples from five randomly sampled categories of PASCAL VOC 2007 [9].
The red highlighted regions in images are detected as containing common objects
by our proposed methods. In each sub-figure, the first column presents the predic-
tion by our DDT (cf. Algorithm 2). The middle column shows the DDT's result based
on the lower convolutional layer. The last column are the predicted results by our
DDT*. (Best viewed in color and zoomed in.). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

the availability of large scale well-annotated image datasets, e.g.,
ImageNet [2], MS COCO [27] and PASCAL VOC [9]. However, anno-
tating a massive number of images is extremely labor-intensive
and costly. To reduce the annotation labor costs, an alternative ap-
proach is to obtain the image annotations directly from the image
search engine from the Internet, e.g., Google or Bing.

However, the annotations of web images returned by a search
engine will inevitably be noisy since the query keywords may
not be consistent with the visual content of target images. Thus,
webly-supervised learning methods [28,29] are proposed for over-
coming this issue.

There are two main branches of webly-supervised learning. The
first branch attempts to boost existing object recognition task per-
formance using web resources [30-32]. Some works are imple-
mented as semi-supervised frameworks by first generating a small
group of labeled seed images and then enlarging the dataset from
these seeds via web data, e.g., [31,32]. In very recently, [30] pro-
poses a two-level attention framework for dealing with webly-
supervised classification, which achieves a new state-of-the-art.
Specifically, they not only use a high-level attention focusing on

a group of images for filtering out noisy images, but also employ a
low-level attention for capturing the discriminative image regions
on the single image level

The second branch is learning visual concepts directly from the
web, e.g., [33,34]. Methods belonging to this category usually col-
lected a large image pool from image search engines and then
performed a filtering operation to remove noise and discover vi-
sual concepts. Our strategy for handling web data based on DDT
naturally falls into the second category. In practice, since DDT
could (1) recognize noisy images and also (2) supply bounding
boxes of objects, we leverage the first usage of DDT to handle
webly-supervised classification (cf. Table 6 and Table 7), and lever-
age both two usages to deal with webly-supervised detection (cf.
Table 8 and Table 9).

3. The proposed method

In this section, we propose the Deep Descriptor Transforma-
tion (DDT) method. Firstly, we introduce notations used in this
paper. Then, we present the DDT process followed by discussions
and analyses. Finally, in order to further improve the object co-
localization performance, the multiple layer ensemble strategy is
utilized in DDT.

3.1. Preliminaries

The following notations are used in the rest of this paper. The
term “feature map” indicates the convolution results of one chan-
nel; the term “activations” indicates feature maps of all channels
in a convolution layer; and the term “descriptor” indicates the d-
dimensional component vector of activations.

Given an input image I of size H x W, the activations of a con-
volution layer are formulated as an order-3 tensor T with h x w x d
elements. T can be considered as having h x w cells and each cell
contains one d-dimensional deep descriptor. For the n-th image
in the image set, we denote its corresponding deep descriptors as

X" = {x'(”i_].) € Rd}, where (i, j) is a particular cell (ie {1,...,h},je
{1,....w})and ne {1,...,N}.

3.2. SCDA recap

Since SCDA (Selective Convolutional Descriptor Aggrega-
tion) [8] is the most related work to ours, we hereby present
a recap of this method. SCDA is proposed for dealing with the
fine-grained image retrieval problem. It employs pre-trained CNN
models to select the meaningful deep descriptors by localizing
the main object in fine-grained images unsupervisedly. In SCDA, it
assumes that each image contains only one main object of interest
and without other categories’ objects. Thus, the object localization
strategy is based on the activation tensor of a single image.

Concretely, for an image, the activation tensor is added up
through the depth direction. Thus, the h xw xd 3-D tensor be-
comes a h x w 2-D matrix, which is called the “aggregation map” in
SCDA. Then, the mean value a of the aggregation map is regarded
as the threshold for localizing the object. If the activation response
in the position (i, j) of the aggregation map is larger than a, it in-
dicates the object might appear in that position.

3.3. Deep descriptor transformation (DDT)

What distinguishes DDT from SCDA is that we can leverage the
correlations beneath the whole image set, instead of a single im-
age. Additionally, different from weakly supervised object localiza-
tion, we do not have either image labels or negative image sets in
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(e) Rake

(f) Wheelchair

Fig. 4. Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each sub-figure contains three successful predictions and one failure case.
In these images, the red rectangle is the prediction by DDT, and the yellow dashed rectangle is the ground truth bounding box. In the successful predictions, the yellow
rectangles are omitted since they are exactly the same as the red predictions. (Best viewed in color and zoomed in.). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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this article.)

WSOL, so that the information we can use is only from the pre-
trained models. Here, we transform the deep descriptors in convo-
lutional layers to mine the hidden cues for co-localizing common
objects.

Principal component analysis (PCA) [35] is a statistical proce-
dure, which uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of linearly
uncorrelated variables (i.e., the principal components). This trans-
formation is defined in such a way that the first principal compo-
nent has the largest possible variance, and each succeeding compo-
nent in turn has the highest variance possible under the constraint
that it is orthogonal to all the preceding components.

PCA is widely used in computer vision and pattern recognition
for image denoising, 3D object retrieval, statistical shape modeling,
subspace learning, and so on. Specifically, in this paper, we uti-

lize PCA as projection directions for transforming these deep de-
scriptors {x;; ;} to evaluate their correlations. Then, on each pro-
jection direction, the corresponding principal component’s values
are treated as the cues for object co-localization, especially the first
principal component. Thanks to the property of this kind of trans-
forming, DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the same
category, we first collect the corresponding convolutional descrip-
tors (X',...,XN) from the last convolutional layer by feeding the
images into a pre-trained CNN model. Then, the mean vector of all
the descriptors is calculated by:

o1
A= gD D X (1)
nojj
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where K =h x w x N. Note that, here we assume each image has
the same number of deep descriptors (i.e., h x w) for presentation
clarity. Our proposed method, however, can handle input images
with arbitrary resolutions.

Then, after obtaining the covariance matrix:

1 _ -
Cov(x) = & D@, -0, -B)T, (2)
nojj
we can get the eigenvectors &, ..., &, of Cov(x) which correspond

to the sorted eigenvalues A1 >--->1,>0.

As aforementioned, since the first principal component has the
largest variance, we take the eigenvector &; corresponding to the
largest eigenvalue as the main projection direction. For the deep
descriptor at a particular position (i, j) of an image, its first princi-
pal component p! is calculated as follows:

1 T >
DPij= 81 (x(i,j) —X). (3)
According to their spatial locations, all p}i i from an image are

formed into a 2-D matrix whose dimensions are h x w. We call that
matrix as indicator matrix:

1 1 1
pg].l) p%1.2) pg],w)
Pa1y Ppeo Piow
Pl=| ) : S| eriw (4)
1. l. 1.
Py  Pwo Pnw)

P! contains positive (negative) values which can reflect the pos-
itive (negative) correlations of these deep descriptors. The larger
the absolute value is, the higher the positive (negative) correlation
will be. Because & is obtained through all N images in that image
set, the positive correlation could indicate the common characteris-
tic through N images. Specifically, in the object co-localization sce-
nario, the corresponding positive correlation indicates indeed the
common object inside these images.

Therefore, the value zero could be used as a natural threshold
for dividing P! of one image into two parts: one part has positive
values indicating the common object, and the other part has neg-
ative values presenting background or objects that rarely appear.
Additionally, if P! of an image has no positive value, it indicates
that no common object exists in that image, which can be used
for detecting noisy images.

In practice, for localizing objects, P! is resized by the nearest
interpolation, such that its size is the same as that of the input
image. Since the nearest interpolation is the zero-order interpola-
tion method, it will not change the signs of the numbers in P.
Thus, the resized P! can be used for localizing the common object
according to the aforementioned principle with the natural thresh-
old (i.e., the value zero). Meanwhile, we employ the algorithm de-
scribed in Algorithm 1 to collect the largest connected compo-
nent of the positive regions in the resized P! to remove several
small noisy positive parts. Then, the minimum rectangle bound-
ing box which contains the largest connected component of posi-
tive regions is returned as our object co-localization prediction for
each image. The whole procedure of the proposed DDT method is
shown in Algorithm 2.

3.4. Discussions and analyses

In this section, we investigate the effectiveness of DDT by com-
paring with SCDA.

As shown in Fig. 2, the object localization regions of SCDA and
DDT are highlighted in red. Because SCDA only considers the in-
formation from a single image, for example, in Fig. 2 (2), “bike”,
“person” and even “guide-board” are all detected as main objects.
Similar observations could be found in Fig. 2 (5), (13), (17), (18),
etc.

Algorithm 1 Finding the largest connected component.

Require: The resized indicator matrix P! corresponding to an im-
age I;
1: Transform P! into a binary map P!,
1 ifpl... >0
where pl; ; = @)=
J 0  otherwise
2: Select one pixel p in P! as the starting point;
3: while True do

4:  Use a flood-fill algorithm to label all the pixels in the con-
nected component containing p;

5:  if All the pixels are labeled then

6: Break;

7. end if

8:  Search for the next unlabeled pixel as p;

9: end while

10: Obtain the connectivity of the connected components, and
their corresponding size (pixel numbers);

11: Select the connected component 133 with the largest pixel num-
ber;

12: return The largest connected component 1551.

Algorithm 2 Deep descriptor transformation (DDT).

Require: A set of N images containing the common object, and a
pre-trained CNN model F;
1: Feed these images with their original resolutions into F;
2: Collect the corresponding convolutional descriptors X1, ..., XN
from the last convolutional layer of F;
3: Calculate the mean vector X of all the descriptors using Eq. 1;
4: Compute the covariance matrix Cov(x) of these deep descrip-
tors based on Eq. 2;
5: Compute the eigenvectors &, ..., &, of Cov(x);
6: Select & with the largest eigenvalue as the main transforma-
tion direction;

7: repeat
8:  Calculate the indicator matrix P! for image I based on Eq. 2
and Eq. 3;

9:  Resize P! into its image’s resolution by nearest interpolation;

10:  Collect the largest connected component I3C‘ of these positive
regions of the resized P! by Algo. 4;

11:  Obtain the minimum rectangle bounding box covering 133 as
the prediction;

12: until All the N images are done;

13: return The minimum rectangle bounding boxes.

Furthermore, we normalize the values (all positive) of the ag-
gregation map of SCDA into the scale of [0, 1], and calculate the
mean value (which is taken as the object localization threshold in
SCDA). The histogram of the normalized values in aggregation map
is also shown in the corresponding sub-figure in Fig. 2. The red
vertical line corresponds to the threshold. We can find that, beyond
the threshold, there are still many values. It gives an explanation
about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P!. Thus, for the bicycle class (cf.
Fig. 2 (2)), DDT can accurately locate the “bicycle” object. The his-
togram of DDT is also drawn. But, P! has both positive and negative
values. We normalize P! into the [—1, 1] scale this time. Appar-
ently, few values are larger than the DDT threshold (i.e., the value
zero). More importantly, many values are close to —1 which indi-
cates the strong negative correlation. This observation validates the
effectiveness of DDT in object co-localization. As another example
shown in Fig. 2 (11), SCDA even wrongly locates “person” in the
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Fig. 6. Examples of noisy images in the WebCars dataset recognized by DDT.

image belonging to the diningtable class. While, DDT can correctly
and accurately locate the “diningtable” image region. More exam-
ples are presented in Fig. 2. In that figure, some failure cases can
be also found, e.g., the chair class in Fig. 2 (9).

In addition, the normalized P' can be also used as localiza-
tion probability scores. Combining it with conditional random filed
techniques might produce more accurate object boundaries. Thus,
DDT can be modified slightly in that way, and then perform the
co-segmentation problem.

3.5. Multiple layer ensemble

As is well known, CNNs are composed of multiple processing
layers to learn representations of images with multiple levels of
abstraction. Different layers will learn different level visual infor-
mation [36]. Lower layers have more general representations (e.g.,
textures and shapes), and they can capture more detailed visual
cues. By contrast, the learned representations of deeper layers con-
tain more semantic information (i.e., high-level concepts). Thus,
deeper layers are good at abstraction, but they lack visual details.
Apparently, lower layer and deeper layer are complementary with
each other. Based on this, several previous work, e.g., [37,38], ag-
gregate the information of multiple layers to boost the final per-
formance on their computer vision tasks.

Inspired by them, we also incorporate the lower convolutional
layer in pre-trained CNNs to supply finer detailed information for
object co-localization, which is named as DDT™.

Concretely, as aforementioned in Algorithm 2, we can obtain 133
of the resize P! for each image from the last convolutional layer
by our DDT. Several visualization examples of 133 are shown in
the first column of Fig. 3. In DDT*, beyond that, those deep de-
scriptors from the previous convolutional layer before the last one
are also used for generating its corresponding resized P!, which is
notated as Pj,. For Py, we directly transform it into a binary

map ﬁSrev- In the middle column of Fig. 3, the red highlighted re-

gions represent the co-localization results by ﬁgrev. Since the ac-
tivations from the previous convolutional layer are less related to
the high-level semantic meaning than those from the last convo-
lutional layer, other objects not belonging to the common object
category are also being detected. However, the localization bound-
aries are much finer than B}. Therefore, we combine P! and P},
together to obtain the final co-localization prediction as follows:

PNy (5)

As shown in the last column of Fig. 3, the co-localization visual-
ization results of DDT* are better than the results of DDT, espe-
cially for the bottle class. In addition, from the quantitative per-
spective, DDT* will bring on average 1.5% improvements on object
co-localization (cf. Table 2, Table 3 and Table 5).

4. Experiments

In this section, we first introduce the evaluation metric and
datasets used in object co-localization. Then, we compare the em-
pirical results of our DDT and DDT* with other state-of-the-arts
on these datasets. The computational cost is reported too. More-
over, the results in Section 4.4 and Section 4.5 illustrate the gener-
alization ability and robustness of the proposed method. Further-
more, we will discuss the ability of DDT to utilize web data as
valid augmentation for improving the accuracy of traditional image
recognition and object detection tasks. Finally, the further study
in Section 4.7 reveals DDT might deal with part-based object co-
localization, which is a novel and challenging problem.

In our experiments, the images keep the original image resolu-
tions. For the pre-trained deep model, the publicly available VGG-
19 model [39] is employed to perform DDT by extracting deep con-
volution descriptors from the last convolution layer (i.e., the relus 4
layer) and employed to perform DDT* by using both the last con-
volution layer (i.e., the relus 4 layer) and its previous layer (i.e., the
relus 5 layer). We use the open-source library MatConvNet [40] for
conducting experiments. All the experiments are run on a com-
puter with Intel Xeon E5-2660 v3, 500G main memory, and a K80
GPU.

4.1. Evaluation metric and datasets

Following previous object co-localization works [6,14,20], we
take the correct localization (CorLoc) metric for evaluating the pro-
posed method. CorLoc is defined as the percentage of images cor-
rectly localized according to the PASCAL-criterion [9]:

area(Bp N Bg)
area(Bp U Bgt) > 05, (6)

where By is the predicted bounding box and Bg is the ground-
truth bounding box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets
commonly used in object co-localization, i.e., the Object Discovery
dataset [41], the PASCAL VOC 2007/VOC 2012 dataset [9] and the
ImageNet Subsets dataset [6].

For experiments on the PASCAL VOC datasets, we fol-
low [6,14,26] to use all images in the trainval set (excluding images
that only contain object instances annotated as difficult or trun-
cated). For Object Discovery, we use the 100-image subset follow-
ing [14,41] in order to make an appropriate comparison with other
methods.

In addition, Object Discovery has 18%, 11% and 7% noisy images
in the Airplane, Car and Horse categories, respectively. These noisy
images contain no object belonging to their category, as the third
image shown in Fig. 1. Particularly, in Section 4.5, we quantitatively
measure the ability of our proposed DDT to identify these noisy
images.

To further investigate the generalization ability of DDT, Ima-
geNet Subsets [6] are used, which contain six subsets/categories.
These subsets are held-out categories from the 1000-label ILSVRC
classification [2]. That is to say, these subsets are “unseen” by pre-
trained CNN models. Experimental results in Section 4.4 show that
our proposed methods is insensitive to the object category.

4.2. Comparisons with state-of-the-arts

In this section, we compare the object co-localization perfor-
mance of our methods with state-of-the-art methods including
both object co-localization and weakly supervised object localiza-
tion.
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Fig. 7. Examples of our WebVOC detection dataset. The red bounding boxes in these figures are automatically labeled by the proposed DDT method. (Best viewed in color
and zoomed in.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Comparisons of CorLoc on object discovery.
Methods airplane  car horse Mean
Joulin et al. [42] 32.93 66.29 54.84 51.35
Joulin et al. [19] 57.32 64.04 52.69 58.02
Rubinstein et al. [41]  74.39 8764 6344 75.16
Tang et al. [20] 71.95 93.26 64.52 76.58
SCDA [8] 87.80 86.52 75.37 83.20
Cho et al. [14] 82.93 9438 7527 8419
Our DDT 91.46 95.51 7742 88.13
Our DDT* 91.46 94.38 76.34 87.39

4.2.1. Comparisons to object co-localization methods

We first compare the results of DDT to state-of-the-arts (includ-
ing SCDA) on Object Discovery in Table 1. For SCDA, we also use
VGG-19 to extract the convolution descriptors and perform exper-
iments. As shown in that table, DDT outperforms other methods
by about 4% in the mean CorLoc metric. Especially for the airplane
class, it is about 10% higher than that of [14]. In addition, note that
the images of each category in this dataset contain only one ob-
ject, thus, SCDA can perform well. But, our DDT* gets a slightly
lower CorLoc score than DDT, which is an exception in all the ob-
ject co-localization datasets. In fact, for car and horse of the Object
Discovery dataset, DDT* only returns one more wrong prediction
than DDT for each category.

For PASCAL VOC 2007 and 2012, these datasets contain diverse
objects per image, which is more challenging than Object Discov-
ery. The comparisons of the CorLoc metric on these two datasets
are reported in Table 2 and Table 3, respectively. It is clear that on
average our DDT and DDT* outperform the previous state-of-the-
arts (based on deep learning) by a large margin on both datasets.
Moreover, our methods work well on localizing small common ob-
jects, e.g., “bottle” and “chair”. In addition, because most images of
these datasets have multiple objects, which do not obey SCDA’s as-
sumption, SCDA performs poorly in the complicated environment.
For fair comparisons, we also use VGG-19 to extract the fully con-
nected representations of the object proposals in [6], and then per-
form the remaining processes of their method (the source codes
are provided by the authors). As aforementioned, due to the high

dependence on the quality of object proposals, their mean CorLoc
metric of VGG-19 is 41.9% and 45.6% on VOC 2007 and 2012, re-
spectively. The improvements are limited, and the performance is
still significantly worse than ours.

4.2.2. Comparisons to weakly supervised localization methods

To further verify the effectiveness of our methods, we also
compare DDT and DDT+ with some state-of-the-art methods for
weakly supervised object localization. Table 4 illustrates these em-
pirical results on VOC 2007. Particularly, DDT achieves 46.9% on av-
erage which is higher than most WSOL methods in the literature,
and DDT* achieves 48.5% on average. While, our proposed method
still has a gap comparing with state-of-the-art WSOL methods, e.g.,
[43,44]. But, it is understandable as our methods do not use any
negative data for co-localization. In addition, our methods could
handle noisy data (cf. Section 4.5). However, existing WSOL meth-
ods are not designed to deal with noise.

4.3. Computational costs of DDT/DDT*

Here, we take the total 171 images in the aeroplane category
of VOC 2007 as examples to report the computational costs. The
average image resolution of the 171 images is 350 x 498. The com-
putational time of DDT has two main components: one is for fea-
ture extraction, the other is for deep descriptor transformation
(cf. Algorithm 2). Because we just need the first principal com-
ponent, the transformation time on all the 120,941 descriptors of
512-d is only 5.7 seconds. The average descriptor extraction time
is 0.18 second/image on GPU and 0.86 second/image on CPU, re-
spectively. For DDT*, it has the same deep descriptor extraction
time. Although it needs descriptors from two convolutional layers,
it only requires one time feed-forward processing. The deep de-
scriptor transformation time of DDT™ is only 11.9 seconds for these
171 images. These numbers above could ensure the efficiency of
the proposed methods in real-world applications.

4.4. Unseen classes apart from ImageNet

In order to justify the generalization ability of the proposed
methods, we also conduct experiments on some images (of six



Table 2

Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007.

Methods aero  bike bird boat  bottle  bus car cat chair  cow table*  dog horse  mbike  person  plant  sheep  sofa train  tv Mean
Joulin et al. [26] 328 173 209 182 45 269 327 410 5.8 291 345 316 261 40.4 17.9 11.8 25.0 275 35.6 121 24.6
SCDA [8] 544 272 434 135 28 393 445 480 62 320 163 498 515 49.7 77 6.1 221 226 464 61 29.5
Cho et al. [14] 503 428 300 185 4.0 623 645 425 86 49.0 122 440 641 57.2 15.3 9.4 309 340 616 315 36.6
Li et al. [6] 731 450 434 277 68 533 583 450 62 480 143 473 69.4 66.8 243 12.8 515 255 652 168 400
Our DDT 673 633 613 227 85 648 570 805 94 490 225 726 7338 69.0 7.2 15.0 353 547 750 294 469
Our DDT* 714 656 646 255 85 648 613 805 103 49.0 265 726 752 69.0 9.9 12.2 39.7 557 750 325 485
Table 3
Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012.
Methods aero bike bird boat  bottle  bus car cat chair  cow table* dog horse  mbike  person  plant  sheep  sofa train tv Mean
SCDA [8] 60.8 417 386 218 74 676 388 574 16.0 340 239 538 473 54.8 79 9.9 253 232 502 10.1 345
Choetal [14] 570 412 360 269 50 81.1 546 509 182 540 312 449 618 48.0 13.0 11.7 514 453 646 392 418
Li et al. [6] 657 578 479 289 6.0 749 484 484 146 544 239 502  69.9 68.4 24.0 14.2 52.7 309 724 216 438
Our DDT 76.7 671 579 305 13.0 819 483 757 184 488 275 71.8 66.8 73.7 6.1 18.5 38.0 547 78.6 346 494
Our DDT* 779 677 618 338 142 825 530 752 189 535 283 738 687 775 8.4 17.6 40.8 553 786 350 511
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Table 4

Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the “v"” in the “Neg.” column indicates that these WSOL methods require access to a negative image set,

whereas our DDT does not.

aero  bike bird boat  bottle  bus car cat chair  cow table*  dog horse  mbike  person  plant  sheep  sofa train  tv Mean
18.2

Neg.

v

Methods

16.7 323 54.8 5.5 304
5.9

9.4
31

29 409 732 448 54 305 19.0 340 488 65.3 8.2
13 2.5 515

9.2

9.0

6.8
4.0

46.5 8.8

424
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Table 5
Comparisons of the CorLoc metric with state-of-the-arts on image sets disjoint with
ImageNet.
Methods chipm. rhino  stoat  racoon  rake wheelc. Mean
Cho et al. [14]  26.6 81.8 44.2 30.1 8.3 353 377
SCDA [8] 323 71.6 529 34.0 7.6 28.3 37.8
Li et al. [6] 449 81.8 67.3 41.8 14.5 39.3 483
Our DDT 70.3 93.2 80.8 71.8 303 68.2 69.1
Our DDT* 72.8 93.2 80.8 75.7 283 717 70.4
Table 6
Comparisons of webly-supervised classification on Web-
Cars [30].
Methods Strategy Accuracy
Simple-CNN GAP 66.86
Zhuang et al. [30] Attention 76.58
Ours (thr=0) DDT — GAP 69.79
Ours (thr=0) DDT — Attention  76.18
Ours (thr=0.1) DDT — GAP 71.66
Ours (thr=0.1) DDT — Attention  78.92
Table 7

Comparisons of webly-supervised classification on We-
bImageNet [30].

Methods Strategy Accuracy
Simple-CNN GAP 58.81
Zhuang et al. [30]  Attention+Neg*® 71.24
Ours (thr=0) DDT — GAP 62.31
Ours (thr=0) DDT — Attention  69.50
Ours (thr=0.1) DDT — GAP 65.59
Ours (thr=0.1) DDT — Attention  73.06

2 In the experiments on WeblmageNet of [30], beyond
attention, they also incorporated 5000 negative class
web images for reducing noise. However, we do not re-
quire any negative images.

subsets) disjoint with the images from ImageNet. Note that, the
six categories (i.e., “chipmunk”, “rhino”, “stoat”, “racoon”, “rake”
and “wheelchair”) of these images are unseen by pre-trained mod-
els. The six subsets were provided in [6]. Table 5 presents the
CorLoc metric on these subsets. Our DDT (69.1% on average) and
DDT* (70.4% on average) still significantly outperform other meth-
ods on all categories, especially for some difficult objects cate-
gories, e.g., rake and wheelchair. In addition, the mean CorLoc met-
ric of [6] based on VGG-19 is only 51.6% on this dataset.

Furthermore, in Fig. 4, several successful predictions by DDT
and also some failure cases on this dataset are provided. In par-
ticular, for “rake” (“wheelchair”), even though a large portion of
images in these two categories contain both people and rakes
(wheelchairs), our DDT could still accurately locate the common
object in all the images, i.e., rakes (wheelchairs), and ignore peo-
ple. This observation validates the effectiveness (especially for the
high CorLoc metric on rake and wheelchair) of our method from
the qualitative perspective.

4.5. Detecting noisy images

In this section, we quantitatively present the ability of the pro-
posed DDT method to identify noisy images. As aforementioned,
in Object Discovery, there are 18%, 11% and 7% noisy images in the
corresponding categories. In our DDT, the number of positive val-
ues in P! can be interpreted as a detection score. The lower the
number is, the higher the probability of noisy images will be. In
particular, no positive value at all in P! presents the image as
definitely a noisy image. For each category in that dataset, the
ROC curve is shown in Fig. 5, which measures how the methods
correctly detect noisy images. In the literature, only the method



Table 8
Comparisons of detection results on the VOC 2007 test set. Note that, “07+12” presents the training data is the union set of VOC 2007 trainval and VOC 2012 trainval. “COCO” denotes that the COCO
trainval set is used for training. “DDT” denotes that the webly data processed by DDT augmentation is used for training.

Data aero  bike bird boat  bottle  bus car cat chair  cow table*  dog horse  mbike  person  plant  sheep  sofa train  tv mAP (%)

07+12 765 790 709 655 521 831 847 864 520 81.9 65.7 848 846 77.5 76.7 38.8 73.6 739 830 726 732
COCO*+07+12 843 820 777 689 657 88.1 884 889 636 863 708 859 876 80.1 823 53.6 80.4 75.8  86.6 789 7838
DDT+07+12 77.6 822 772 649 612 854 872 886 582 826  69.7 859 870 78.9 78.5 46.3 76.6 735 825 751 76.0

2 Note that, the COCO trainval set contains 120k human labeled images involving 80 object categories. While, our DDT augmentation only depends on 10k images of 20 object categories, in especial,
these images are automatically labeled by the proposed DDT method.

Table 9
Comparisons of detection results on the VOC 2012 test set. Note that, “07++12" presents the training data is the union set of VOC 2007 trainval+test and VOC 2012 trainval. “COCO” denotes that the COCO
trainval set is used for training. “DDT” denotes that the webly data processed by DDT augmentation is used for training.

Data aero  bike  bird boat bottle  bus car cat chair cow  table* dog horse  mbike  person plant sheep  sofa train  tv mAP (%)
07++12 849 798 743 539 498 775 759 885 456 771 55.3 869 817 80.9 79.6 40.1 72.6 609 812 615 704
COCO*+07++12 874 836 768 629 59.6 819 820 913 549 826 59.0 89.0 855 84.7 841 52.2 789 655 854 702 759
DDT+07++12 865 819 762 634 554 80.8  80.1 89.7 516 786  56.2 888 848 85.5 82.6 50.6 78.1 641 856 681 744

2 Note that, the COCO trainval set contains 120k human labeled images involving 80 object categories. While, our DDT augmentation only depends on 10k images of 20 object categories, in especial, these
images are automatically labeled by the proposed DDT method.
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in [20] (i.e., the Image-Box model in that paper) could solve ob-
ject co-localization with noisy data. From these figures, it is appar-
ent to see that, in object co-localization, our DDT has significantly
better performance in detecting noisy images than Image-Box
(whose noisy detection results are obtained by re-running the pub-
licly available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs on
Object Discovery, cf. Table 1.

4.6. DDT Augmentation based on web images

As validated by previous experiments, DDT can accurately de-
tect noisy images and meanwhile supply object bounding boxes of
images (except for noisy images). Therefore, we can use DDT to
process web images. In this section, we report the results of both
image classification and object detection when using DDT as a tool
for generating valid external data sources from free but noisy web
data. This DDT based strategy is denoted as DDT augmentation.

4.6.1. Webly-supervised classification

For web based image classification, we compare DDT augmen-
tation with the current state-of-the-art webly-supervised classifi-
cation method proposed by [30]. As discussed in the related work,
[30] proposed a group attention framework for handling web data.
In their method, it employed two level attentions: the first level
is designed as the group attention for filtering out noise, and the
second level attention is based on the single image for capturing
discriminative regions of each image.

In the experiments, we test the methods on the WebCars and
WebImageNet datasets which are also proposed by [30]. In Web-
Cars, there are 213,072 car images of totally 431 car model cat-
egories collected from web. In WeblmageNet, [30] used 100 sub-
categories of the original ImageNet as the categories of their We-
blmageNet dataset. There are 61,639 images belonging to the 100
sub-categories from web in total.

In our DDT augmentation, as what we do in Section 4.5, we first
use DDT to obtain the number of positive values in P! as the de-
tection score for each image in every category. Here, we divide the
detection score by the total number of values in P! as the noise
rate which is in the range of [0, 1]. The more the noise rate is
close to zero, the higher the probability of noisy images will be. In
the following, we conduct experiments with two thresholds (i.e., 0
or 0.1) with respect to the noise rate. If the noise rate of an im-
age equals to or is smaller than the threshold, that image will be
regarded as a noisy image. Then, we remove it from the original
webly dataset. After doing the above processing for every category,
we can obtain a relatively clean training dataset. Finally, we train
deep CNN networks on that clean dataset. The other specific ex-
perimental settings of these two webly datasets follow [30].

Two kinds of deep CNN networks are conducted as the test bed
for evaluating the classification performance on both two webly
datasets:

« “GAP” represents the CNN model with Global Average Pooling
as its last layer before the classification layer (i.e., fc+sigmoid),
which is commonly used for the image classification task, e.g.,
[49] and [50].

“Attention” represents the CNN model with the attention mech-
anism on the single image level. Because the method proposed
in [30] is equipped with the single image attention strategy, we
also compare our method based on this baseline model for fair
comparisons.

The quantitative comparisons of our DDT augmentation with
[30] are shown in Table 6 and Table 7. In these tables, for exam-
ple, “DDT — GAP” denotes that we first deploy DDT augmentation

and then use the GAP model to conduct classification. As shown in
these two tables, for both two base models (i.e., “GAP” and “Atten-
tion”), our DDT augmentation with 0.1 threshold performs better
than DDT augmentation with 0 threshold, which is reasonable. Be-
cause in many cases, the noisy images still contains several related
concept regions, these (small) regions might be detected as a part
of common objects. Therefore, if we set the threshold as 0.1, this
kind of noisy images will be omitted. It will bring more satisfac-
tory classification accuracy. Several detected noisy images by DDT
of WebCars are listed in Fig. 6.

Comparing with the state-of-the-art (i.e., [30]), our DDT aug-
mentation with 0.1 threshold outperforms it and the GAP baseline
apparently, which validate the generalization ability and the effec-
tiveness of the proposed DDT in real-life computer vision tasks, i.e.,
DDT augmentation in webly-supervised classification. Meanwhile,
our DDT method is easy to implement and has low computational
cost, which ensures its scalability and usability in the real-world
scenarios.

4.6.2. Webly-supervised detection

For web based object detection, we first collect an external
dataset from the Internet by Google image search engine, named
WebVOC, using the categories of the PASCAL VOC dataset [9]. In
total, we collect 12,776 noisy web images, which has a similar
scale as the original PASCAL VOC dataset. As the results shown in
webly-supervised classification, DDT with 0.1 threshold could be
the optimal option for webly noisy images. Firstly, we also use
DDT with 0.1 threshold to remove the noisy images for the im-
ages belonging to 20 categories in WebVOC. Then, 10,081 images
are remaining as valid images. Furthermore, DDT are used to au-
tomatically generate the corresponding object bounding box for
each image. The generated bounding boxes by DDT are regarded as
the object “ground truth” bounding boxes for our WebVOC detec-
tion dataset. Several random samples of our WebVOC dataset with
the corresponding DDT generating bounding boxes are shown in
Fig. 7.

After that, a state-of-the-art object detection method, i.e., Faster
R-CNN [51], is trained as the base model on different training data
to validate the effectiveness of DDT augmentation on the object
detection task. For the test sets of detection, we employ the VOC
2007 and VOC 2012 test set and report the results in Table 8 and
Table 9, respectively.

For testing on VOC 2007, following [51], Faster R-CNN is trained
on “07+12” and “COCO+07+12”. “07+12” presents the training data
is the union set of VOC 2007 trainval and VOC 2012 trainval.
“COCO+07+12" denotes that except for VOC 2007 and VOC 2012,
the COCO trainval set is also used for training. “DDT+07+12" is our
proposal, which uses DDT to process the web images as aforemen-
tioned and then combines the processed web data with “07+12” as
the final training data.

As shown in Table 8, our proposal outperforms “07+12” by 2.8%
on VOC 2007, which is a large margin on the object detection task.
In addition, the detection mAP of DDT augmentation is 4% better
than “07++12” on the VOC 2012 test set, cf. Table 9. Note that, our
DDT augmentation only depends on 10k images of 20 object cate-
gories, in especial, these images are automatically labeled by the
proposed DDT method.

On the other hand, our mAP is comparable with the mAP train-
ing on “COCO+07+12” in Table 8 (or “COCO+07++12” in Table 9).
Here, we would like to point out that the COCO trainval set con-
tains 120k human labeled images involving 80 object categories,
which requires much more human labors, capital and time costs
than our DDT augmentation. Therefore, these detection results
could validate the effectiveness of DDT augmentation on the ob-
ject detection task.
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Fig. 8. Four images belonging to each of three categories of VOC 2007 with visual-
ization of their indicator matrices P' and P2. In visualization figures, warm colors
indicate positive values, and cool colors present negative. (Best viewed in color.).

4.7. Further study

In the above, DDT only utilizes the information of the first prin-
cipal components, i.e., P1. How about others, e.g., the second prin-
cipal components P2? In Fig. 8, we show four images from each
of three categories (i.e., dogs, airplanes and trains) in PASCAL VOC
with the visualization of their P! and P2. Through these figures, it
is apparently to find P! can locate the whole common object. How-
ever, P2 interestingly separates a part region from the main object
region, e.g., the head region from the torso region for dogs, the
wheel and engine regions from the fuselage region for airplanes,
and the wheel region from the train body region for trains. Mean-
while, these two meaningful regions can be easily distinguished
from the background. These observations inspire us to use DDT for
the more challenging part-based object co-localization task in the
future, which is never touched before in the literature.

5. Conclusions

Pre-trained models are widely used in diverse applications
in pattern recognition and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transformation
(DDT) for object co-localization. DDT indeed revealed another
reusability of deep pre-trained networks, i.e., convolutional acti-
vations/descriptors can play a role as a common object detector.
It offered further understanding and insights about CNNs. Besides,
our proposed DDT method is easy to implement, and it achieved
great object co-localization performance. Moreover, the general-

ization ability and robustness of DDT ensure its effectiveness and
powerful reusability in real-world applications. Thus, DDT can be
used to handle free but noisy web images and further generate
valid data sources for improving both recognition and detection ac-
curacy.

Additionally, DDT also has the potential ability in the applica-
tions of video-based unsupervised object discovery. Meanwhile, by
considering the fruitful webly video data sources, DDT could be
one of the most important parts of a solution for life-long learn-
ing. Furthermore, interesting observations in Section 4.7 make the
more challenging but intriguing part-based object co-localization
problem be a future work.
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