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a b s t r a c t 

Reusable model design becomes desirable with the rapid expansion of computer vision and pattern recog- 

nition applications. In this paper, we focus on the reusability of pre-trained deep convolutional models. 

Specifically, different from treating pre-trained models as feature extractors, we reveal more treasures 

beneath convolutional layers, i.e., the convolutional activations could act as a detector for the common 

object in the object co-localization problem. We propose a simple yet effective method, termed Deep 

Descriptor Transformation (DDT), for evaluating the correlations of descriptors and then obtaining the 

category-consistent regions, which can accurately locate the common object in a set of unlabeled images, 

i.e., object co-localization. Empirical studies validate the effectiveness of the proposed DDT method. On 

benchmark object co-localization datasets, DDT consistently outperforms existing state-of-the-art meth- 

ods by a large margin. Moreover, DDT also demonstrates good generalization ability for unseen categories 

and robustness for dealing with noisy data. Beyond those, DDT can be also employed for harvesting web 

images into valid external data sources for improving performance of both image recognition and object 

detection. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

Model reuse [1] attempts to construct a model by utilizing ex-

sting available models, mostly trained for other tasks, rather than

uilding a model from scratch. Particularly in deep learning, since

eep convolutional neural networks have achieved great success in

arious tasks involving images, videos, texts and more, there are

everal studies have the flavor of reusing deep models pre-trained

n ImageNet [2] . 

In pattern recognition and computer vision, pre-trained mod-

ls on ImageNet have been successfully adopted to various usages,

.g., as universal feature extractors [3–6] , object proposal genera-

ors [7] , etc. In particular, [8] proposed the SCDA (Selective Con-

olutional Descriptor Aggregation) method to utilize pre-trained

odels for both localizing a single fine-grained object (e.g., birds

f different species) in each image and retrieving fine-grained im-

ges of the same classes/species in an unsupervised fashion. 
∗ Corresponding authors. 

E-mail addresses: weixiushen@megvii.com (X.-S. Wei), wujx2001@gmail.com (J. 

u), chunhua.shen@adelaide.edu.au (C. Shen). 
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In this paper, we reveal that the convolutional activations

an be used as a detector for the common object in object co-

ocalization. Object co-localization is a fundamental computer vi-

ion problem, which simultaneously localizes objects of the same

ategory across a set of distinct images. Specifically, we propose

 simple but effective method termed Deep Descriptor Transfor-

ation (DDT) for object co-localization. In DDT, the deep convo-

utional descriptors extracted from pre-trained deep convolutional

odels are transformed into a new space, where it can evaluate

he correlations between these descriptors. By leveraging the cor-

elations among images in the image set, the common object in-

ide these images can be located automatically without additional

upervision signals. The pipeline of DDT is shown in Fig. 1 . In gen-

ral, our DDT could demonstrate the possibility of convolutional

ctivations/descriptors in pre-trained models being able to act as a

etector for the common object. 

Experimental results show that DDT significantly outperforms

xisting state-of-the-art methods, including object co-localization

nd weakly supervised object localization, in both the deep learn-

ng and hand-crafted feature scenarios. Besides, we empirically

how that DDT has a good generalization ability for unseen im-

ges apart from ImageNet . More importantly, the proposed method

s robust, because DDT can also detect the noisy images which

https://doi.org/10.1016/j.patcog.2018.10.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.10.022&domain=pdf
mailto:weixiushen@megvii.com
mailto:wujx2001@gmail.com
mailto:chunhua.shen@adelaide.edu.au
https://doi.org/10.1016/j.patcog.2018.10.022
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Fig. 1. Pipeline of the proposed DDT method for object co-localization. In this in- 

stance, the goal is to localize the airplane within each image. Note that, there might 

be few noisy images in the image set. (Best viewed in color.). 
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2 Our WebVOC dataset and the source codes of DDT are both released via: http: 

//lamda.nju.edu.cn/weixs/project/DDT/DDT.html . 
do not contain the common object. Thanks to the advantages of

DDT, our method could be used as a tool to harvest easy-to-obtain

but noisy web images. We can employ DDT to remove noisy im-

ages from webly datasets for improving image recognition accu-

racy. Moreover, it can be also utilized to supply object bounding

boxes of web images. Then, we use these images with automati-

cally labeled object boxes as valid external data sources to enhance

object detection performance. 

Our main contributions are as follows: 

1. We propose a simple yet effective method, i.e., Deep Descrip-

tor Transformation, for unsupervised object discovery and ob-

ject co-localization. Besides, DDT reveals another probability

of deep pre-trained network reusing, i.e., convolutional activa-

tions/descriptors can play a role as a common object detector. 

2. The co-localization process of DDT is both effective and ef-

ficient, which does not require image labels, negative im-

ages or redundant object proposals. DDT consistently outper-

forms state-of-the-arts of object co-localization methods and

weakly supervised object localization methods. With the en-

semble of multiple CNN layers, DDT could further improve its

co-localization performance. 

3. DDT has a good generalization ability for unseen categories and

robustness for dealing with noisy data. Thanks to these advan-

tages, DDT can be employed beyond the narrow co-localization

task. Specifically, it can be used as a generalized tool for ex-

ploiting noisy but free web images. By removing noisy images

and automatically supplying object bounding boxes, these web

images processed by DDT could become valid external data

sources for improving both recognition and detection perfor-

mance. We thus provide a very useful tool for automatically

annotating images. The effectiveness of DDT augmentation on

recognition and detection is validated in Section 4.6 . 
4. Based on the previous point, we also collect an object detection

dataset from web images, named WebVOC . 2 It shares the same

20 categories as the PASCAL VOC dataset [9] , and has a similar

dataset scale (10k images) comparing with PASCAL VOC . We also

release the WebVOC dataset with the automatically generated

bounding boxes by DDT for further study. 

This paper is extended based on our preliminary work [10] .

omparing with it, we now further introduce the multiple layer

nsemble strategy for improving co-localization performance, pro-

ide DDT augmentation for handling web images, apply the pro-

osed method on webly-supervised learning tasks (i.e., both recog-

ition and detection), and supply our DDT based webly object de-

ection dataset. 

The remainder of the paper is organized as follows. In Section 2 ,

e briefly review related literature of CNN model reuse, ob-

ect co-localization and webly-supervised learning. In Section 3 ,

e introduce our proposed method (DDT and its variant DDT + ).
ection 4 reports the object co-localization results and the re-

ults of webly-supervised learning tasks. We conclude the paper

n Section 5 finally. 

. Related work 

We briefly review three lines of related work: model reuse

f CNNs, research on object co-localization and webly-supervised

earning. 

.1. CNN model reuse 

Reusability has been emphasized by [1] as a crucial character-

stic of the new concept of learnware . It would be ideal if mod-

ls can be reused in scenarios that are very different from their

riginal training scenarios. Particularly, with the breakthrough in

mage classification using Convolutional Neural Networks (CNN),

re-trained CNN models trained for one task (e.g., recognition)

ave also been applied to domains different from their original

urposes (e.g., for describing texture [5] or finding object pro-

osals [7] ). Meanwhile, several works reveal that deep CNN mod-

ls designed for classification can emerge object detectors [11,12] .

owever, for such adaptations of pre-trained models, they still re-

uire further annotations in the new domain (e.g., image labels).

hile, DDT deals with the object co-localization problem in a set-

ing whose only assumption is these images contain one common

bject, rather than requiring image labels. 

Coincidentally, several recent works also shed lights on CNN

re-trained model reuse in the unsupervised setting, e.g., SCDA

Selective Convolutional Descriptor Aggregation) [8] . SCDA is pro-

osed for handling the fine-grained image retrieval task, where

t uses pre-trained models (from ImageNet ) to locate main ob-

ects in fine-grained images. It is the most related work to ours,

ven though SCDA is not for object co-localization. Different from

ur DDT, SCDA assumes only an object of interest in each image,

nd meanwhile objects from other categories does not exist. Thus,

CDA locates the object using cues from this single image assump-

ion. Clearly, it can not work well for images containing diverse ob-

ects (cf. Table 2 and Table 3 ), and also can not handle data noise

cf. Section 4.5 ). 

.2. Object co-localization 

Object co-localization [13–16] , is a fundamental problem in

attern recognition and computer vision, where it needs to dis-

http://lamda.nju.edu.cn/weixs/project/DDT/DDT.html
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Fig. 2. Examples of twenty categories from the PASCAL VOC 2007 dataset [9] . The first column of each sub-figure is produced by SCDA, the second column is by our DDT. 

The red vertical lines in the histogram plots indicate the corresponding thresholds for localizing objects. The selected regions in images are highlighted in red. (Best viewed 

in color and zoomed in.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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over the common object emerging in only positive sets of ex-

mple images (without any negative examples or further supervi-

ions). Object co-localization shares some similarities with image

o-segmentation [17–19] . Instead of generating a precise segmen-

ation of the related objects in each image, co-localization methods

im to return a bounding box around the object. Moreover, it also

llows us to extract rich features from within the boxes to com-

are across images, which has shown to be very helpful for detec-

ion [20] . 

Additionally, co-localization is also related to weakly supervised

bject localization (WSOL) [21–25] . But the key difference be-

ween them is that WSOL requires manually-labeled negative im-

ges whereas co-localization does not. Thus, WSOL methods could

chieve better localization performance than co-localization meth-

ds. However, our proposed methods perform comparably with

ost state-of-the-art WSOL methods (cf. Table 4 ). 

In the literature, some representative co-localization meth-

ds are based on low-level visual cues and optimization algo-

ithms [20] . formulates co-localization as a boolean constrained

uadratic program which can be relaxed to a convex problem.

hen, it is further accelerated by the Frank-Wolfe algorithm [26] .

fter that, [14] proposes a Probabilistic Hough Matching algorithm

o match object proposals across images and then dominant ob-

ects are localized by selecting proposals based on matching scores.

v  
Recently, there also emerge several co-localization methods

ased on pre-trained deep convolutional models, e.g., [6,24] . Un-

ortunately, these methods just treat pre-trained models as simple

eature extractors to extract the fully connected representations,

hich do not sufficiently mine the treasures beneath the convolu-

ional layers (i.e., leveraging the original correlations between deep

escriptors among convolutional layers). Moreover, these methods

lso require object proposals as a part of their object discovery,

hich not only made them highly depend on the quality of object

roposals, but may lead to huge computational costs. In addition,

any previous co-localization methods can not handle noisy data,

xcept for [20] . 

Compared to the previous work, DDT works without requiring

ounding boxes, additional image labels or redundant object pro-

osals. Images only need one forward run through a pre-trained

odel. Then, efficient deep descriptor transformation is employed

or obtaining the category-consistent image regions. DDT is very

asy to implement, and surprisingly has good generalization abil-

ty and robustness. Furthermore, DDT can be used a valid data aug-

entation tool for handling noisy but free web images. 

.3. Webly-supervised learning 

Recent development of deep CNNs has led to great success in a

ariety of computer vision tasks. This success is largely driven by
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Fig. 3. Examples from five randomly sampled categories of PASCAL VOC 2007 [9] . 

The red highlighted regions in images are detected as containing common objects 

by our proposed methods. In each sub-figure, the first column presents the predic- 

tion by our DDT (cf. Algorithm 2 ). The middle column shows the DDT’s result based 

on the lower convolutional layer. The last column are the predicted results by our 

DDT + . (Best viewed in color and zoomed in.). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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the availability of large scale well-annotated image datasets, e.g.,

ImageNet [2] , MS COCO [27] and PASCAL VOC [9] . However, anno-

tating a massive number of images is extremely labor-intensive

and costly. To reduce the annotation labor costs, an alternative ap-

proach is to obtain the image annotations directly from the image

search engine from the Internet, e.g., Google or Bing. 

However, the annotations of web images returned by a search

engine will inevitably be noisy since the query keywords may

not be consistent with the visual content of target images. Thus,

webly-supervised learning methods [28,29] are proposed for over-

coming this issue. 

There are two main branches of webly-supervised learning. The

first branch attempts to boost existing object recognition task per-

formance using web resources [30–32] . Some works are imple-

mented as semi-supervised frameworks by first generating a small

group of labeled seed images and then enlarging the dataset from

these seeds via web data, e.g., [31,32] . In very recently, [30] pro-

poses a two-level attention framework for dealing with webly-

supervised classification, which achieves a new state-of-the-art.

Specifically, they not only use a high-level attention focusing on
 group of images for filtering out noisy images, but also employ a

ow-level attention for capturing the discriminative image regions

n the single image level 

The second branch is learning visual concepts directly from the

eb, e.g., [33,34] . Methods belonging to this category usually col-

ected a large image pool from image search engines and then

erformed a filtering operation to remove noise and discover vi-

ual concepts. Our strategy for handling web data based on DDT

aturally falls into the second category. In practice, since DDT

ould (1) recognize noisy images and also (2) supply bounding

oxes of objects, we leverage the first usage of DDT to handle

ebly-supervised classification (cf. Table 6 and Table 7 ), and lever-

ge both two usages to deal with webly-supervised detection (cf.

able 8 and Table 9 ). 

. The proposed method 

In this section, we propose the Deep Descriptor Transforma-

ion (DDT) method. Firstly, we introduce notations used in this

aper. Then, we present the DDT process followed by discussions

nd analyses. Finally, in order to further improve the object co-

ocalization performance, the multiple layer ensemble strategy is

tilized in DDT. 

.1. Preliminaries 

The following notations are used in the rest of this paper. The

erm “feature map” indicates the convolution results of one chan-

el; the term “activations” indicates feature maps of all channels

n a convolution layer; and the term “descriptor” indicates the d -

imensional component vector of activations. 

Given an input image I of size H × W , the activations of a con-

olution layer are formulated as an order-3 tensor T with h × w × d

lements. T can be considered as having h × w cells and each cell

ontains one d -dimensional deep descriptor. For the n -th image

n the image set, we denote its corresponding deep descriptors as

 

n = 

{ 

x n 
( i, j ) 

∈ R 

d 
} 

, where ( i, j ) is a particular cell ( i ∈ { 1 , . . . , h } , j ∈
 

1 , . . . , w } ) and n ∈ { 1 , . . . , N } . 

.2. SCDA recap 

Since SCDA (Selective Convolutional Descriptor Aggrega-

ion) [8] is the most related work to ours, we hereby present

 recap of this method. SCDA is proposed for dealing with the

ne-grained image retrieval problem. It employs pre-trained CNN

odels to select the meaningful deep descriptors by localizing

he main object in fine-grained images unsupervisedly. In SCDA, it

ssumes that each image contains only one main object of interest

nd without other categories’ objects. Thus, the object localization

trategy is based on the activation tensor of a single image. 

Concretely, for an image, the activation tensor is added up

hrough the depth direction. Thus, the h × w × d 3-D tensor be-

omes a h × w 2-D matrix, which is called the “aggregation map” in

CDA. Then, the mean value ā of the aggregation map is regarded

s the threshold for localizing the object. If the activation response

n the position ( i, j ) of the aggregation map is larger than ā , it in-

icates the object might appear in that position. 

.3. Deep descriptor transformation (DDT) 

What distinguishes DDT from SCDA is that we can leverage the

orrelations beneath the whole image set , instead of a single im-

ge. Additionally, different from weakly supervised object localiza-

ion, we do not have either image labels or negative image sets in
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Fig. 4. Random samples of predicted object co-localization bounding box on ImageNet Subsets . Each sub-figure contains three successful predictions and one failure case. 

In these images, the red rectangle is the prediction by DDT, and the yellow dashed rectangle is the ground truth bounding box. In the successful predictions, the yellow 

rectangles are omitted since they are exactly the same as the red predictions. (Best viewed in color and zoomed in.). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 5. ROC curves illustrating the effectiveness of our DDT at identifying noisy images on the Object Discovery dataset. The curves in red line are the ROC curves of DDT. 

The curves in blue dashed line present the method in [20] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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SOL, so that the information we can use is only from the pre-

rained models. Here, we transform the deep descriptors in convo-

utional layers to mine the hidden cues for co-localizing common

bjects. 

Principal component analysis (PCA) [35] is a statistical proce-

ure, which uses an orthogonal transformation to convert a set of

bservations of possibly correlated variables into a set of linearly

ncorrelated variables (i.e., the principal components). This trans-

ormation is defined in such a way that the first principal compo-

ent has the largest possible variance, and each succeeding compo-

ent in turn has the highest variance possible under the constraint

hat it is orthogonal to all the preceding components. 

PCA is widely used in computer vision and pattern recognition

or image denoising, 3D object retrieval, statistical shape modeling,

ubspace learning, and so on. Specifically, in this paper, we uti-
ize PCA as projection directions for transforming these deep de-

criptors { x ·
( i, j ) 

} to evaluate their correlations. Then, on each pro-

ection direction, the corresponding principal component’s values

re treated as the cues for object co-localization, especially the first

rincipal component. Thanks to the property of this kind of trans-

orming, DDT is also able to handle data noise. 

In DDT, for a set of N images containing objects from the same

ategory, we first collect the corresponding convolutional descrip-

ors ( X 1 , . . . , X N ) from the last convolutional layer by feeding the

mages into a pre-trained CNN model. Then, the mean vector of all

he descriptors is calculated by: 

¯
 = 

1 

K 

∑ 

n 

∑ 

i, j 

x n ( i, j ) , (1) 
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Algorithm 1 Finding the largest connected component. 

Require: The resized indicator matrix P 1 corresponding to an im- 

age I; 

1: Transform P 1 into a binary map 

ˆ P 1 , 

where ˆ p 1 
(i, j) 

= 

{ 

1 if p 1 (i, j) > 0 

0 otherwise 
; 

2: Select one pixel p in 

ˆ P 1 as the starting point; 

3: while True do 

4: Use a flood-fill algorithm to label all the pixels in the con- 

nected component containing p; 

5: if All the pixels are labeled then 

6: Break; 

7: end if 

8: Search for the next unlabeled pixel as p; 

9: end while 

10: Obtain the connectivity of the connected components, and 

their corresponding size (pixel numbers); 

11: Select the connected component ˆ P 1 c with the largest pixel num- 

ber; 

12: return The largest connected component ˆ P 1 c . 

Algorithm 2 Deep descriptor transformation (DDT). 

Require: A set of N images containing the common object, and a 

pre-trained CNN model F; 

1: Feed these images with their original resolutions into F; 

2: Collect the corresponding convolutional descriptors X 1 , . . . , X N 

from the last convolutional layer of F; 

3: Calculate the mean vector x̄ of all the descriptors using Eq. 1; 

4: Compute the covariance matrix Cov ( x ) of these deep descrip- 

tors based on Eq. 2; 

5: Compute the eigenvectors ξ1 , . . . , ξd of Cov ( x ) ; 

6: Select ξ1 with the largest eigenvalue as the main transforma- 

tion direction; 

7: repeat 

8: Calculate the indicator matrix P 1 for image I based on Eq. 2 

and Eq. 3; 

9: Resize P 1 into its image’s resolution by nearest interpolation; 

10: Collect the largest connected component ˆ P 1 c of these positive 

regions of the resized P 1 by Algo. 4; 

11: Obtain the minimum rectangle bounding box covering ˆ P 1 c as 

the prediction; 

12: until All the N images are done; 

13: return The minimum rectangle bounding boxes. 
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where K = h × w × N. Note that, here we assume each image has

the same number of deep descriptors (i.e., h × w ) for presentation

clarity. Our proposed method, however, can handle input images

with arbitrary resolutions. 

Then, after obtaining the covariance matrix: 

Cov ( x ) = 

1 

K 

∑ 

n 

∑ 

i, j 

( x n ( i, j ) − x̄ )( x n ( i, j ) − x̄ ) � , (2)

we can get the eigenvectors ξ1 , . . . , ξd of Cov( x ) which correspond

to the sorted eigenvalues λ1 ≥ ��� ≥λd ≥ 0. 

As aforementioned, since the first principal component has the

largest variance, we take the eigenvector ξ1 corresponding to the

largest eigenvalue as the main projection direction. For the deep

descriptor at a particular position ( i, j ) of an image, its first princi-

pal component p 1 is calculated as follows: 

p 1 (i, j) = ξ
� 
1 

(
x ( i, j ) − x̄ 

)
. (3)

According to their spatial locations, all p 1 
(i, j) 

from an image are

formed into a 2-D matrix whose dimensions are h × w . We call that

matrix as indicator matrix : 

P 1 = 

⎡ 

⎢ ⎢ ⎣ 

p 1 
(1 , 1) 

p 1 
(1 , 2) 

. . . p 1 
(1 ,w ) 

p 1 
(2 , 1) 

p 1 
(2 , 2) 

. . . p 1 
(2 ,w ) 

. . . 
. . . 

. . . 
. . . 

p 1 
(h, 1) 

p 1 
(h, 2) 

. . . p 1 
(h,w ) 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

h ×w . (4)

P 1 contains positive (negative) values which can reflect the pos-

itive (negative) correlations of these deep descriptors. The larger

the absolute value is, the higher the positive (negative) correlation

will be. Because ξ1 is obtained through all N images in that image

set, the positive correlation could indicate the common characteris-

tic through N images. Specifically, in the object co-localization sce-

nario, the corresponding positive correlation indicates indeed the

common object inside these images. 

Therefore, the value zero could be used as a natural threshold

for dividing P 1 of one image into two parts: one part has positive

values indicating the common object, and the other part has neg-

ative values presenting background or objects that rarely appear.

Additionally, if P 1 of an image has no positive value, it indicates

that no common object exists in that image, which can be used

for detecting noisy images. 

In practice, for localizing objects, P 1 is resized by the nearest

interpolation, such that its size is the same as that of the input

image. Since the nearest interpolation is the zero-order interpola-

tion method, it will not change the signs of the numbers in P 1 .

Thus, the resized P 1 can be used for localizing the common object

according to the aforementioned principle with the natural thresh-

old (i.e., the value zero). Meanwhile, we employ the algorithm de-

scribed in Algorithm 1 to collect the largest connected compo-

nent of the positive regions in the resized P 1 to remove several

small noisy positive parts. Then, the minimum rectangle bound-

ing box which contains the largest connected component of posi-

tive regions is returned as our object co-localization prediction for

each image. The whole procedure of the proposed DDT method is

shown in Algorithm 2 . 

3.4. Discussions and analyses 

In this section, we investigate the effectiveness of DDT by com-

paring with SCDA. 

As shown in Fig. 2 , the object localization regions of SCDA and

DDT are highlighted in red. Because SCDA only considers the in-

formation from a single image, for example, in Fig. 2 (2), “bike”,

“person” and even “guide-board” are all detected as main objects.

Similar observations could be found in Fig. 2 (5), (13), (17), (18),

etc. 
Furthermore, we normalize the values (all positive) of the ag-

regation map of SCDA into the scale of [0, 1], and calculate the

ean value (which is taken as the object localization threshold in

CDA). The histogram of the normalized values in aggregation map

s also shown in the corresponding sub-figure in Fig. 2 . The red

ertical line corresponds to the threshold. We can find that, beyond

he threshold, there are still many values. It gives an explanation

bout why SCDA highlights more regions. 

Whilst, for DDT, it leverages the whole image set to trans-

orm these deep descriptors into P 1 . Thus, for the bicycle class (cf.

ig. 2 (2)), DDT can accurately locate the “bicycle” object. The his-

ogram of DDT is also drawn. But, P 1 has both positive and negative

alues. We normalize P 1 into the [ −1 , 1 ] scale this time. Appar-

ntly, few values are larger than the DDT threshold (i.e., the value

ero). More importantly, many values are close to −1 which indi-

ates the strong negative correlation. This observation validates the

ffectiveness of DDT in object co-localization. As another example

hown in Fig. 2 (11), SCDA even wrongly locates “person” in the
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Fig. 6. Examples of noisy images in the WebCars dataset recognized by DDT. 
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mage belonging to the diningtable class. While, DDT can correctly

nd accurately locate the “diningtable” image region. More exam-

les are presented in Fig. 2 . In that figure, some failure cases can

e also found, e.g., the chair class in Fig. 2 (9). 

In addition, the normalized P 1 can be also used as localiza-

ion probability scores. Combining it with conditional random filed

echniques might produce more accurate object boundaries. Thus,

DT can be modified slightly in that way, and then perform the

o-segmentation problem. 

.5. Multiple layer ensemble 

As is well known, CNNs are composed of multiple processing

ayers to learn representations of images with multiple levels of

bstraction. Different layers will learn different level visual infor-

ation [36] . Lower layers have more general representations (e.g.,

extures and shapes), and they can capture more detailed visual

ues. By contrast, the learned representations of deeper layers con-

ain more semantic information (i.e., high-level concepts). Thus,

eeper layers are good at abstraction, but they lack visual details.

pparently, lower layer and deeper layer are complementary with

ach other. Based on this, several previous work, e.g., [37,38] , ag-

regate the information of multiple layers to boost the final per-

ormance on their computer vision tasks. 

Inspired by them, we also incorporate the lower convolutional

ayer in pre-trained CNNs to supply finer detailed information for

bject co-localization, which is named as DDT + . 
Concretely, as aforementioned in Algorithm 2 , we can obtain 

ˆ P 1 c 

f the resize P 1 for each image from the last convolutional layer

y our DDT. Several visualization examples of ˆ P 1 c are shown in

he first column of Fig. 3 . In DDT + , beyond that, those deep de-

criptors from the previous convolutional layer before the last one

re also used for generating its corresponding resized P 1 , which is

otated as P 1 prev . For P 1 prev , we directly transform it into a binary

ap 

ˆ P 1 prev . In the middle column of Fig. 3 , the red highlighted re-

ions represent the co-localization results by ˆ P 1 prev . Since the ac-

ivations from the previous convolutional layer are less related to

he high-level semantic meaning than those from the last convo-

utional layer, other objects not belonging to the common object

ategory are also being detected. However, the localization bound-

ries are much finer than 

ˆ P 1 c . Therefore, we combine ˆ P 1 c and 

ˆ P 1 prev 

ogether to obtain the final co-localization prediction as follows: 

ˆ 
 

1 
c ∩ 

ˆ P 1 prev . (5) 

s shown in the last column of Fig. 3 , the co-localization visual-

zation results of DDT + are better than the results of DDT, espe-

ially for the bottle class. In addition, from the quantitative per-

pective, DDT + will bring on average 1.5% improvements on object

o-localization (cf. Table 2, Table 3 and Table 5 ). 
. Experiments 

In this section, we first introduce the evaluation metric and

atasets used in object co-localization. Then, we compare the em-

irical results of our DDT and DDT + with other state-of-the-arts

n these datasets. The computational cost is reported too. More-

ver, the results in Section 4.4 and Section 4.5 illustrate the gener-

lization ability and robustness of the proposed method. Further-

ore, we will discuss the ability of DDT to utilize web data as

alid augmentation for improving the accuracy of traditional image

ecognition and object detection tasks. Finally, the further study

n Section 4.7 reveals DDT might deal with part-based object co-

ocalization, which is a novel and challenging problem. 

In our experiments, the images keep the original image resolu-

ions. For the pre-trained deep model, the publicly available VGG-

9 model [39] is employed to perform DDT by extracting deep con-

olution descriptors from the last convolution layer (i.e., the relu 5 _ 4 

ayer) and employed to perform DDT + by using both the last con-

olution layer (i.e., the relu 5 _ 4 layer) and its previous layer (i.e., the

elu 5 _ 3 layer). We use the open-source library MatConvNet [40] for

onducting experiments. All the experiments are run on a com-

uter with Intel Xeon E5-2660 v3, 500G main memory, and a K80

PU. 

.1. Evaluation metric and datasets 

Following previous object co-localization works [6,14,20] , we

ake the correct localization (CorLoc) metric for evaluating the pro-

osed method. CorLoc is defined as the percentage of images cor-

ectly localized according to the PASCAL-criterion [9] : 

area (B p ∩ B gt ) 

area (B p ∪ B gt ) 
> 0 . 5 , (6) 

here B p is the predicted bounding box and B gt is the ground-

ruth bounding box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets

ommonly used in object co-localization, i.e., the Object Discovery

ataset [41] , the PASCAL VOC 2007 / VOC 2012 dataset [9] and the

mageNet Subsets dataset [6] . 

For experiments on the PASCAL VOC datasets, we fol-

ow [6,14,26] to use all images in the trainval set (excluding images

hat only contain object instances annotated as difficult or trun-

ated ). For Object Discovery , we use the 100-image subset follow-

ng [14,41] in order to make an appropriate comparison with other

ethods. 

In addition, Object Discovery has 18%, 11% and 7% noisy images

n the Airplane, Car and Horse categories, respectively. These noisy

mages contain no object belonging to their category, as the third

mage shown in Fig. 1 . Particularly, in Section 4.5 , we quantitatively

easure the ability of our proposed DDT to identify these noisy

mages. 

To further investigate the generalization ability of DDT, Ima-

eNet Subsets [6] are used, which contain six subsets/categories.

hese subsets are held-out categories from the 10 0 0-label ILSVRC

lassification [2] . That is to say, these subsets are “unseen” by pre-

rained CNN models. Experimental results in Section 4.4 show that

ur proposed methods is insensitive to the object category. 

.2. Comparisons with state-of-the-arts 

In this section, we compare the object co-localization perfor-

ance of our methods with state-of-the-art methods including

oth object co-localization and weakly supervised object localiza-

ion. 
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Fig. 7. Examples of our WebVOC detection dataset. The red bounding boxes in these figures are automatically labeled by the proposed DDT method. (Best viewed in color 

and zoomed in.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Comparisons of CorLoc on object discovery . 

Methods airplane car horse Mean 

Joulin et al. [42] 32.93 66.29 54.84 51.35 

Joulin et al. [19] 57.32 64.04 52.69 58.02 

Rubinstein et al. [41] 74.39 87.64 63.44 75.16 

Tang et al. [20] 71.95 93.26 64.52 76.58 

SCDA [8] 87.80 86.52 75.37 83.20 

Cho et al. [14] 82.93 94.38 75.27 84.19 

Our DDT 91.46 95.51 77.42 88.13 

Our DDT + 91.46 94.38 76.34 87.39 
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4.2.1. Comparisons to object co-localization methods 

We first compare the results of DDT to state-of-the-arts (includ-

ing SCDA) on Object Discovery in Table 1 . For SCDA, we also use

VGG-19 to extract the convolution descriptors and perform exper-

iments. As shown in that table, DDT outperforms other methods

by about 4% in the mean CorLoc metric. Especially for the airplane

class, it is about 10% higher than that of [14] . In addition, note that

the images of each category in this dataset contain only one ob-

ject, thus, SCDA can perform well. But, our DDT + gets a slightly

lower CorLoc score than DDT, which is an exception in all the ob-

ject co-localization datasets. In fact, for car and horse of the Object

Discovery dataset, DDT + only returns one more wrong prediction

than DDT for each category. 

For PASCAL VOC 2007 and 2012 , these datasets contain diverse

objects per image, which is more challenging than Object Discov-

ery . The comparisons of the CorLoc metric on these two datasets

are reported in Table 2 and Table 3 , respectively. It is clear that on

average our DDT and DDT + outperform the previous state-of-the-

arts (based on deep learning) by a large margin on both datasets.

Moreover, our methods work well on localizing small common ob-

jects, e.g., “bottle” and “chair”. In addition, because most images of

these datasets have multiple objects, which do not obey SCDA’s as-

sumption, SCDA performs poorly in the complicated environment.

For fair comparisons, we also use VGG-19 to extract the fully con-

nected representations of the object proposals in [6] , and then per-

form the remaining processes of their method (the source codes

are provided by the authors). As aforementioned, due to the high
ependence on the quality of object proposals, their mean CorLoc

etric of VGG-19 is 41.9% and 45.6% on VOC 2007 and 2012 , re-

pectively. The improvements are limited, and the performance is

till significantly worse than ours. 

.2.2. Comparisons to weakly supervised localization methods 

To further verify the effectiveness of our methods, we also

ompare DDT and DDT + with some state-of-the-art methods for

eakly supervised object localization. Table 4 illustrates these em-

irical results on VOC 2007 . Particularly, DDT achieves 46.9% on av-

rage which is higher than most WSOL methods in the literature,

nd DDT + achieves 48.5% on average. While, our proposed method

till has a gap comparing with state-of-the-art WSOL methods, e.g.,

43,44] . But, it is understandable as our methods do not use any

egative data for co-localization. In addition, our methods could

andle noisy data (cf. Section 4.5 ). However, existing WSOL meth-

ds are not designed to deal with noise. 

.3. Computational costs of DDT/DDT + 

Here, we take the total 171 images in the aeroplane category

f VOC 2007 as examples to report the computational costs. The

verage image resolution of the 171 images is 350 × 498. The com-

utational time of DDT has two main components: one is for fea-

ure extraction, the other is for deep descriptor transformation

cf. Algorithm 2 ). Because we just need the first principal com-

onent, the transformation time on all the 120,941 descriptors of

12-d is only 5.7 seconds. The average descriptor extraction time

s 0.18 second/image on GPU and 0.86 second/image on CPU, re-

pectively. For DDT + , it has the same deep descriptor extraction

ime. Although it needs descriptors from two convolutional layers,

t only requires one time feed-forward processing. The deep de-

criptor transformation time of DDT + is only 11.9 seconds for these

71 images. These numbers above could ensure the efficiency of

he proposed methods in real-world applications. 

.4. Unseen classes apart from ImageNet 

In order to justify the generalization ability of the proposed

ethods, we also conduct experiments on some images (of six
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Table 2 

Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007 . 

Methods aero bike bird boat bottle bus car cat chair cow table ∗ dog horse mbike person plant sheep sofa train tv Mean 

Joulin et al. [26] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6 

SCDA [8] 54.4 27.2 43.4 13.5 2.8 39.3 44.5 48.0 6.2 32.0 16.3 49.8 51.5 49.7 7.7 6.1 22.1 22.6 46.4 6.1 29.5 

Cho et al. [14] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6 

Li et al. [6] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0 

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9 

Our DDT + 71.4 65.6 64.6 25.5 8.5 64.8 61.3 80.5 10.3 49.0 26.5 72.6 75.2 69.0 9.9 12.2 39.7 55.7 75.0 32.5 48.5 

Table 3 

Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012 . 

Methods aero bike bird boat bottle bus car cat chair cow table ∗ dog horse mbike person plant sheep sofa train tv Mean 

SCDA [8] 60.8 41.7 38.6 21.8 7.4 67.6 38.8 57.4 16.0 34.0 23.9 53.8 47.3 54.8 7.9 9.9 25.3 23.2 50.2 10.1 34.5 

Cho et al. [14] 57.0 41.2 36.0 26.9 5.0 81.1 54.6 50.9 18.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.3 64.6 39.2 41.8 

Li et al. [6] 65.7 57.8 47.9 28.9 6.0 74.9 48.4 48.4 14.6 54.4 23.9 50.2 69.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8 

Our DDT 76.7 67.1 57.9 30.5 13.0 81.9 48.3 75.7 18.4 48.8 27.5 71.8 66.8 73.7 6.1 18.5 38.0 54.7 78.6 34.6 49.4 

Our DDT + 77.9 67.7 61.8 33.8 14.2 82.5 53.0 75.2 18.9 53.5 28.3 73.8 68.7 77.5 8.4 17.6 40.8 55.3 78.6 35.0 51.1 
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Table 5 

Comparisons of the CorLoc metric with state-of-the-arts on image sets disjoint with 

ImageNet . 

Methods chipm. rhino stoat racoon rake wheelc. Mean 

Cho et al. [14] 26.6 81.8 44.2 30.1 8.3 35.3 37.7 

SCDA [8] 32.3 71.6 52.9 34.0 7.6 28.3 37.8 

Li et al. [6] 44.9 81.8 67.3 41.8 14.5 39.3 48.3 

Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1 

Our DDT + 72.8 93.2 80.8 75.7 28.3 71.7 70.4 

Table 6 

Comparisons of webly-supervised classification on Web- 

Cars [30] . 

Methods Strategy Accuracy 

Simple-CNN GAP 66.86 

Zhuang et al. [30] Attention 76.58 

Ours (thr = 0) DDT → GAP 69.79 

Ours (thr = 0) DDT → Attention 76.18 

Ours (thr = 0.1) DDT → GAP 71.66 

Ours (thr = 0.1) DDT → Attention 78.92 

Table 7 

Comparisons of webly-supervised classification on We- 

bImageNet [30] . 

Methods Strategy Accuracy 

Simple-CNN GAP 58.81 

Zhuang et al. [30] Attention + Neg a 71.24 

Ours (thr = 0) DDT → GAP 62.31 

Ours (thr = 0) DDT → Attention 69.50 

Ours (thr = 0.1) DDT → GAP 65.59 

Ours (thr = 0.1) DDT → Attention 73.06 

a In the experiments on WebImageNet of [30] , beyond 

attention, they also incorporated 50 0 0 negative class 

web images for reducing noise. However, we do not re- 

quire any negative images. 
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ubsets) disjoint with the images from ImageNet . Note that, the

ix categories (i.e., “chipmunk”, “rhino”, “stoat”, “racoon”, “rake”

nd “wheelchair”) of these images are unseen by pre-trained mod-

ls. The six subsets were provided in [6] . Table 5 presents the

orLoc metric on these subsets. Our DDT (69.1% on average) and

DT + (70.4% on average) still significantly outperform other meth-

ds on all categories, especially for some difficult objects cate-

ories, e.g., rake and wheelchair . In addition, the mean CorLoc met-

ic of [6] based on VGG-19 is only 51.6% on this dataset. 

Furthermore, in Fig. 4 , several successful predictions by DDT

nd also some failure cases on this dataset are provided. In par-

icular, for “rake” (“wheelchair”), even though a large portion of

mages in these two categories contain both people and rakes

wheelchairs), our DDT could still accurately locate the common

bject in all the images, i.e., rakes (wheelchairs), and ignore peo-

le. This observation validates the effectiveness (especially for the

igh CorLoc metric on rake and wheelchair ) of our method from

he qualitative perspective. 

.5. Detecting noisy images 

In this section, we quantitatively present the ability of the pro-

osed DDT method to identify noisy images. As aforementioned,

n Object Discovery , there are 18%, 11% and 7% noisy images in the

orresponding categories. In our DDT, the number of positive val-

es in P 1 can be interpreted as a detection score. The lower the

umber is, the higher the probability of noisy images will be. In

articular, no positive value at all in P 1 presents the image as

efinitely a noisy image. For each category in that dataset, the

OC curve is shown in Fig. 5 , which measures how the methods

orrectly detect noisy images. In the literature, only the method
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Table 8 

Comparisons of detection results on the VOC 2007 test set. Note that, “07+12” presents the training data is the union set of VOC 2007 trainval and VOC 2012 trainval. “COCO” denotes that the COCO 

trainval set is used for training. “DDT” denotes that the webly data processed by DDT augmentation is used for training. 

Data aero bike bird boat bottle bus car cat chair cow table ∗ dog horse mbike person plant sheep sofa train tv mAP (%) 

07 + 12 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6 73.2 

COCO a + 07+12 84.3 82.0 77.7 68.9 65.7 88.1 88.4 88.9 63.6 86.3 70.8 85.9 87.6 80.1 82.3 53.6 80.4 75.8 86.6 78.9 78.8 

DDT + 07+12 77.6 82.2 77.2 64.9 61.2 85.4 87.2 88.6 58.2 82.6 69.7 85.9 87.0 78.9 78.5 46.3 76.6 73.5 82.5 75.1 76.0 

a Note that, the COCO trainval set contains 120k human labeled images involving 80 object categories. While, our DDT augmentation only depends on 10k images of 20 object categories, in especial, 

these images are automatically labeled by the proposed DDT method. 

Table 9 

Comparisons of detection results on the VOC 2012 test set. Note that, “07++12” presents the training data is the union set of VOC 2007 trainval+test and VOC 2012 trainval. “COCO” denotes that the COCO 

trainval set is used for training. “DDT” denotes that the webly data processed by DDT augmentation is used for training. 

Data aero bike bird boat bottle bus car cat chair cow table ∗ dog horse mbike person plant sheep sofa train tv mAP (%) 

07 + +12 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5 70.4 

COCO a + 07++12 87.4 83.6 76.8 62.9 59.6 81.9 82.0 91.3 54.9 82.6 59.0 89.0 85.5 84.7 84.1 52.2 78.9 65.5 85.4 70.2 75.9 

DDT + 07++12 86.5 81.9 76.2 63.4 55.4 80.8 80.1 89.7 51.6 78.6 56.2 88.8 84.8 85.5 82.6 50.6 78.1 64.1 85.6 68.1 74.4 

a Note that, the COCO trainval set contains 120k human labeled images involving 80 object categories. While, our DDT augmentation only depends on 10k images of 20 object categories, in especial, these 

images are automatically labeled by the proposed DDT method. 
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in [20] (i.e., the Image-Box model in that paper) could solve ob-

ject co-localization with noisy data. From these figures, it is appar-

ent to see that, in object co-localization, our DDT has significantly

better performance in detecting noisy images than Image-Box
(whose noisy detection results are obtained by re-running the pub-

licly available code released by the authors). Meanwhile, our mean

CorLoc metric without noise is about 12% higher than theirs on

Object Discovery , cf. Table 1 . 

4.6. DDT Augmentation based on web images 

As validated by previous experiments, DDT can accurately de-

tect noisy images and meanwhile supply object bounding boxes of

images (except for noisy images). Therefore, we can use DDT to

process web images. In this section, we report the results of both

image classification and object detection when using DDT as a tool

for generating valid external data sources from free but noisy web

data. This DDT based strategy is denoted as DDT augmentation. 

4.6.1. Webly-supervised classification 

For web based image classification, we compare DDT augmen-

tation with the current state-of-the-art webly-supervised classifi-

cation method proposed by [30] . As discussed in the related work,

[30] proposed a group attention framework for handling web data.

In their method, it employed two level attentions: the first level

is designed as the group attention for filtering out noise, and the

second level attention is based on the single image for capturing

discriminative regions of each image. 

In the experiments, we test the methods on the WebCars and

WebImageNet datasets which are also proposed by [30] . In Web-

Cars , there are 213,072 car images of totally 431 car model cat-

egories collected from web. In WebImageNet , [30] used 100 sub-

categories of the original ImageNet as the categories of their We-

bImageNet dataset. There are 61,639 images belonging to the 100

sub-categories from web in total. 

In our DDT augmentation, as what we do in Section 4.5 , we first

use DDT to obtain the number of positive values in P 1 as the de-

tection score for each image in every category. Here, we divide the

detection score by the total number of values in P 1 as the noise

rate which is in the range of [0, 1]. The more the noise rate is

close to zero, the higher the probability of noisy images will be. In

the following, we conduct experiments with two thresholds (i.e., 0

or 0.1) with respect to the noise rate. If the noise rate of an im-

age equals to or is smaller than the threshold, that image will be

regarded as a noisy image. Then, we remove it from the original

webly dataset. After doing the above processing for every category,

we can obtain a relatively clean training dataset. Finally, we train

deep CNN networks on that clean dataset. The other specific ex-

perimental settings of these two webly datasets follow [30] . 

Two kinds of deep CNN networks are conducted as the test bed

for evaluating the classification performance on both two webly

datasets: 

• “GAP” represents the CNN model with G lobal A verage P ooling

as its last layer before the classification layer (i.e., fc+sigmoid),

which is commonly used for the image classification task, e.g.,

[49] and [50] . 

• “Attention” represents the CNN model with the attention mech-

anism on the single image level. Because the method proposed

in [30] is equipped with the single image attention strategy, we

also compare our method based on this baseline model for fair

comparisons. 

The quantitative comparisons of our DDT augmentation with

[30] are shown in Table 6 and Table 7 . In these tables, for exam-

ple, “DDT → GAP” denotes that we first deploy DDT augmentation
nd then use the GAP model to conduct classification. As shown in

hese two tables, for both two base models (i.e., “GAP” and “Atten-

ion”), our DDT augmentation with 0.1 threshold performs better

han DDT augmentation with 0 threshold, which is reasonable. Be-

ause in many cases, the noisy images still contains several related

oncept regions, these (small) regions might be detected as a part

f common objects. Therefore, if we set the threshold as 0.1, this

ind of noisy images will be omitted. It will bring more satisfac-

ory classification accuracy. Several detected noisy images by DDT

f WebCars are listed in Fig. 6 . 

Comparing with the state-of-the-art (i.e., [30] ), our DDT aug-

entation with 0.1 threshold outperforms it and the GAP baseline

pparently, which validate the generalization ability and the effec-

iveness of the proposed DDT in real-life computer vision tasks, i.e.,

DT augmentation in webly-supervised classification. Meanwhile,

ur DDT method is easy to implement and has low computational

ost, which ensures its scalability and usability in the real-world

cenarios. 

.6.2. Webly-supervised detection 

For web based object detection, we first collect an external

ataset from the Internet by Google image search engine, named

ebVOC , using the categories of the PASCAL VOC dataset [9] . In

otal, we collect 12,776 noisy web images, which has a similar

cale as the original PASCAL VOC dataset. As the results shown in

ebly-supervised classification, DDT with 0.1 threshold could be

he optimal option for webly noisy images. Firstly, we also use

DT with 0.1 threshold to remove the noisy images for the im-

ges belonging to 20 categories in WebVOC . Then, 10,081 images

re remaining as valid images. Furthermore, DDT are used to au-

omatically generate the corresponding object bounding box for

ach image. The generated bounding boxes by DDT are regarded as

he object “ground truth” bounding boxes for our WebVOC detec-

ion dataset. Several random samples of our WebVOC dataset with

he corresponding DDT generating bounding boxes are shown in

ig. 7 . 

After that, a state-of-the-art object detection method, i.e., Faster

-CNN [51] , is trained as the base model on different training data

o validate the effectiveness of DDT augmentation on the object

etection task. For the test sets of detection, we employ the VOC

007 and VOC 2012 test set and report the results in Table 8 and

able 9 , respectively. 

For testing on VOC 2007 , following [51] , Faster R-CNN is trained

n “07+12” and “COCO+07+12”. “07+12” presents the training data

s the union set of VOC 2007 trainval and VOC 2012 trainval.

COCO+07+12” denotes that except for VOC 2007 and VOC 2012 ,

he COCO trainval set is also used for training. “DDT+07+12” is our

roposal, which uses DDT to process the web images as aforemen-

ioned and then combines the processed web data with “07+12” as

he final training data. 

As shown in Table 8 , our proposal outperforms “07+12” by 2.8%

n VOC 2007 , which is a large margin on the object detection task.

n addition, the detection mAP of DDT augmentation is 4% better

han “07++12” on the VOC 2012 test set, cf. Table 9 . Note that, our

DT augmentation only depends on 10k images of 20 object cate-

ories, in especial, these images are automatically labeled by the

roposed DDT method. 

On the other hand, our mAP is comparable with the mAP train-

ng on “COCO+07+12” in Table 8 (or “COCO+07++12” in Table 9 ).

ere, we would like to point out that the COCO trainval set con-

ains 120k human labeled images involving 80 object categories,

hich requires much more human labors, capital and time costs

han our DDT augmentation. Therefore, these detection results

ould validate the effectiveness of DDT augmentation on the ob-

ect detection task. 
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Fig. 8. Four images belonging to each of three categories of VOC 2007 with visual- 

ization of their indicator matrices P 1 and P 2 . In visualization figures, warm colors 

indicate positive values, and cool colors present negative. (Best viewed in color.). 
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.7. Further study 

In the above, DDT only utilizes the information of the first prin-

ipal components, i.e., P 1 . How about others, e.g., the second prin-

ipal components P 2 ? In Fig. 8 , we show four images from each

f three categories (i.e., dogs, airplanes and trains) in PASCAL VOC

ith the visualization of their P 1 and P 2 . Through these figures, it

s apparently to find P 1 can locate the whole common object. How-

ver, P 2 interestingly separates a part region from the main object

egion, e.g., the head region from the torso region for dogs , the

heel and engine regions from the fuselage region for airplanes ,

nd the wheel region from the train body region for trains . Mean-

hile, these two meaningful regions can be easily distinguished

rom the background. These observations inspire us to use DDT for

he more challenging part-based object co-localization task in the

uture, which is never touched before in the literature. 

. Conclusions 

Pre-trained models are widely used in diverse applications

n pattern recognition and computer vision. However, the trea-

ures beneath pre-trained models are not exploited sufficiently.

n this paper, we proposed Deep Descriptor Transformation

DDT) for object co-localization. DDT indeed revealed another

eusability of deep pre-trained networks, i.e., convolutional acti-

ations/descriptors can play a role as a common object detector.

t offered further understanding and insights about CNNs. Besides,

ur proposed DDT method is easy to implement, and it achieved

reat object co-localization performance. Moreover, the general-
zation ability and robustness of DDT ensure its effectiveness and

owerful reusability in real-world applications. Thus, DDT can be

sed to handle free but noisy web images and further generate

alid data sources for improving both recognition and detection ac-

uracy. 

Additionally, DDT also has the potential ability in the applica-

ions of video-based unsupervised object discovery. Meanwhile, by

onsidering the fruitful webly video data sources, DDT could be

ne of the most important parts of a solution for life-long learn-

ng. Furthermore, interesting observations in Section 4.7 make the

ore challenging but intriguing part-based object co-localization

roblem be a future work. 
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