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a b s t r a c t 

Fine-grained image recognition is a challenging computer vision problem, due to the small inter-class 

variations caused by highly similar subordinate categories, and the large intra-class variations in poses, 

scales and rotations. In this paper, we prove that selecting useful deep descriptors contributes well to 

fine-grained image recognition. Specifically, a novel Mask-CNN model without the fully connected layers 

is proposed. Based on the part annotations, the proposed model consists of a fully convolutional network 

to both locate the discriminative parts ( e.g. , head and torso), and more importantly generate weighted ob- 

ject/part masks for selecting useful and meaningful convolutional descriptors. After that, a three-stream 

Mask-CNN model is built for aggregating the selected object- and part-level descriptors simultaneously. 

Thanks to discarding the parameter redundant fully connected layers, our Mask-CNN has a small feature 

dimensionality and efficient inference speed by comparing with other fine-grained approaches. Further- 

more, we obtain a new state-of-the-art accuracy on two challenging fine-grained bird species categoriza- 

tion datasets, which validates the effectiveness of both the descriptor selection scheme and the proposed 

Mask-CNN model. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Fine-grained recognition tasks such as identifying the species of

birds [1,2] , flowers [3,4] and cars [5] , have been popular in appli-

cations of computer vision and pattern recognition. Since the cate-

gories are all similar to each other, different categories can only

be distinguished by slight and subtle differences, which makes

fine-grained recognition a challenging problem. Compared to the

general object recognition tasks, fine-grained recognition benefits

more from learning critical parts of the objects, which helps dis-

criminate different subclasses and align objects of the same class

[6–13] . 

A straightforward way to represent parts is to use the deep con-

volutional features/descriptors. The convolutional descriptors con-

tain more localized ( i.e. , parts) information compared to the fea-

ture of the fully connected layers ( i.e. , whole image). In addition,

these deep descriptors are known to correspond to mid-level in-

formation, e.g. , object parts [14] . All the previous part-based fine-

grained approaches, e.g. , [7,8,10,11] , directly used the deep convo-

lutional descriptors and encoded them into a single representa-
∗ Corresponding author. 
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ion, without evaluating the usefulness of the obtained object/part

eep descriptors. By using powerful convolutional neural networks

15] , we may not need to select useful dimensions inside feature

ectors, as what we do for hand-crafted features [16,17] . However,

ince most deep descriptors are not useful or meaningful for fine-

rained recognition, it is necessary to select useful deep convo-

utional descriptors. Recently, selecting deep descriptors sheds its

ight on the fine-grained image retrieval task [18] . Moreover, it is

lso beneficial to fine-grained image recognition. 

In this paper, by developing a novel deep part detection and

escriptor selection scheme, we propose an end-to-end Mask-CNN

M-CNN) model which discards the fully connected layers for fine-

rained bird species categorization. We only require the part an-

otations and image-level labels during the training time. In M-

NN, given the part annotations, we firstly separate them into

wo point sets. One set corresponds to the head part of the fine-

rained bird image, and the other is for the torso. Then, the small-

st rectangles that cover each point set are returned as the ground-

ruth mask, as shown in Fig. 1 . The other pixels are background.

y treating part localization as a three-class segmentation task,

e leverage fully convolutional networks (FCN) [19] to generate

eighted masks in the testing time for both localizing parts and

electing useful deep descriptors, which does not use any annota-

ion during testing . After getting these two part masks, the seg-

https://doi.org/10.1016/j.patcog.2017.10.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.10.002&domain=pdf
mailto:wujx2001@nju.edu.cn
https://doi.org/10.1016/j.patcog.2017.10.002
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Table 1 

Comparison of classification accuracy on CUB200-2011 with state-of-the-art methods. Note that, “Model” describes the 

deep models used in these methods. The inference speeds (frames/sec) of M-CNNs on a K40 GPU are also reported. 

Method Train phase Test phase Model Dim. Acc. 

BBox Parts BBox Parts 

PB R-CNN with BBox [10] � � � Alex-Net × 3 12,288 76.4% 

Part-Stacked CNN [7] � � � Part-Stacked CNN × 1 4,096 76.6% 

Deep LAC [8] � � � Alex-Net × 3 12,288 80.3% 

PB R-CNN [10] � � Alex-Net × 3 12,288 73.9% 

Pose Normalized CNNs [30] � � Alex-Net × 3 13,512 75.7% 

MixDCNN [45] � GoogLeNet × 1 6144 81.1% 

Co-Segmentation [38] � VGG-19 × 2 126,976 82.0% 

Multi-grained [46] � VGG-19 × 3 12,288 83.0% 

Two-Level [34] VGG-16 × 1 16,384 77.9% 

Weakly supervised FG [11] VGG-16 × 1 262,144 79.3% 

Constellations [33] VGG-19 × 1 208,896 81.0% 

Multi-grained [46] VGG-19 × 3 12,288 81.7% 

Bilinear [27] VGG-16 and VGG-M 262,144 84.1% 

Spatial Transformer CNN [26] ST-CNN (inception) × 4 4,096 84.1% 

PDFS [35] VGG-16 × 1 69,632 84.5% 

Our 3-stream M-CNN (Alex-Net) a � Alex-Net (w/o FCs) × 3 1,536 78.6% 

Our 3-stream M-CNN (VGG-16) b � VGG-16 (w/o FCs) × 3 3,072 85.7% 

Our 3-stream M-CNN (ResNet-50) c � ResNet-50 × 3 12,288 87.3% 

a The inference speed of M-CNN (Alex-Net) is 33.9 frames/sec. 
b The inference speed of M-CNN (VGG-16) is 8.3 frames/sec. 
c The inference speed of M-CNN (ResNet) is 11.8 frames/sec. (All the speeds here contain both part masks prediction 

and the final classification.) 

Fig. 1. We generate the rectangles (in Fig. 1 b) for the bird’s head and torso based 

on the part annotations (red, blue and yellow dots in Fig. 1 a). Other pixels are 

treated as background. The two yellow part key points ( i.e. , nape and throat) are 

included in both head and torso. (Best if viewed in color.). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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2 In this comparison, we do not consider methods that use large amounts of ex- 

ternal images collected from the web. 
entation class scores are treated as the automatically learned

eights for aggregating descriptors. Meanwhile, we combine these

wo part masks to form the weighted object mask. Based on these

bject/part masks, a three-stream Mask-CNN (image, head, torso)

s built for joint training and aggregating the object-level and part-

evel cues simultaneously. The architecture of the proposed three-

tream M-CNN is shown in Fig. 2 . In each stream of M-CNN, we

iscard the fully connected layers. In the last convolutional layer,

n input image is represented by multiple deep descriptors. In or-

er to select useful descriptors to keep only those corresponding to

he object, the pre-learned object/part masks by FCN are used. Af-

er that, the selected descriptors of each stream are both average

nd max pooled into two 512-d feature vectors, respectively. The

tandard � 2 -normalization is followed. Finally, the feature vectors

f these three streams are concatenated, and then a classification

fc+softmax) layer is added for end-to-end joint training. 

We validate the proposed three-stream M-CNN on two bench-

ark fine-grained image recognition datasets, i.e. , the Caltech-

CSD Birds (CUB) 200–2011 [1] and Birdsnap [20] dataset.

n CUB200-2011 , we achieved 85.7% classification accuracy based

n VGG models [21] and 87.3% on Residual Nets [22] . On Bird-

nap , our proposed M-CNN obtained 77.3% accuracy based on VGG

21] and 80.2% based on Residual Nets [22] . The classification ac-

uracy of our M-CNN is new state-of-the-art on both two fine-
rained datasets. Moreover, we also get accurate part localization

cf. Section 4.3 ). The key advantages and major contributions of the

roposed M-CNN model are: 

• To the best of our knowledge, Mask-CNN is the first model

that selects deep convolutional descriptors for object recogni-

tion, especially for fine-grained image recognition. 
• We present a novel and efficient part-based three-stream model

for fine-grained recognition. By discarding the fully connected

layers, the proposed M-CNN is computationally efficient (cf.

Table 1 and Table 4 ). Additionally, comparing with state-of-the-

art methods, M-CNN has smaller feature dimensionality. Be-

yond those, it achieves the highest classification accuracy on

CUB200-2011 and Birdsnap among published methods. 2 

• The part localization performance of the proposed model out-

performs other part-based fine-grained approaches which re-

quires additional bounding boxes. In particular, M-CNN is

12.76% higher than state-of-the-art for head localization on

CUB200-2011 . 

The rest of the paper is organized as follows. Section 2 summa-

izes related work. The proposed Mask-CNN model including the

bject/part masks learning procedure and the classification train-

ng process is described in Section 3 . Detailed performance studies

nd analyses are conducted in Section 4 . Section 5 concludes the

aper. 

. Related work 

In this section, we first review fine-grained image recognition,

nd then, give a brief recap about the researches of deep descriptor

election. 

.1. Fine-grained image recognition 

Fine-grained recognition is a challenging problem and has re-

ently emerged as a hot topic [1,3,5,23–25] . During the past few

ears, a number of effective fine-grained recognition methods have
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Fig. 2. Architecture of the proposed three-stream Mask-CNN model. The three streams correspond to the whole image, head and torso image patches, respectively. In each 

stream, we employ the learned part/object masks to select the useful deep descriptors, and then aggregate these selected descriptors by weights (presented by different 

colors in Fig. 2d) to form the final image representation. As shown, thanks to the descriptor selection scheme, a large number of descriptors corresponding to background 

can be discarded by M-CNN, which is beneficial to fine-grained recognition. (This figure is best viewed in color.) 
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been developed in the literature [7,8,10–13,26–29] . We can roughly

categorize these methods into three groups. The first group, e.g. ,

[26,27] , attempted to learn a more discriminative feature repre-

sentation by developing powerful deep models for classifying fine-

grained images. The second group aligned the objects in fine-

grained images to eliminate pose variations and the influence of

camera position, e.g. , [8,30,31] . The last group focused on part-

based representations, because it is widely acknowledged that the

subtle difference between fine-grained images mostly resides in

the unique properties of object parts. 

For the part-based fine-grained recognition methods,

[8,10,32] used both bounding boxes of the birds and part an-

notations during training to learn an accurate part localization

model. Then, based on these detected parts, different CNNs are

fine-tuned using the detected parts separately. To ensure satisfac-

tory localization results, they even used bounding boxes in the

testing phase. In contrast, our method only need part annotations

for training, and do not need any supervision during testing.

Moreover, our three-stream M-CNN is a unified framework for

capturing object- and part-level information simultaneously. 

Some other part-based methods considered a weakly super-

vised setting, in which they categorize fine-grained images with

only image-level labels, e.g. , [11,33–35] . As will be shown by

our experiments, classification accuracy of M-CNN is significantly

higher than these weakly supervised methods. Meanwhile, M-CNN

discards the parameter redundant fully connected layers, which

makes it efficient to train/inference. Besides, the dimensionality of

image representations in M-CNN is quite low, cf. Table 1 . Therefore,

M-CNN can be scalable to large-scale fine-grained datasets. 

Moreover, these part-based methods, e.g. , [10,11,33–36] , usually

require to firstly produce object/part proposals by selective search

[37] . By comparing with that, the proposed M-CNN is more con-
n  
ise, which can accurately localize fine-grained parts without utiliz-

ng bounding boxes and redundant object proposals . 

In addition, there are also fine-grained recognition methods

ased on segmentation, e.g. , [7,38] . The most significant difference

etween them and M-CNN is: these methods only use segmenta-

ion to localize the whole object [38] or parts [7] , while we fur-

her select useful deep convolutional descriptors using the masks

btained from segmentation. Among them, the part-stacked CNN

odel [7] is the most related work to ours. In [7] , part-stacked

NN requires both bounding boxes and part annotations in train-

ng, and even needed the bounding boxes during testing. Within

he image patch cropped using the bounding box, [7] treated the

mage crop around each of the fifteen part key points as 15 seg-

entation foreground classes, and used FCN to solve the 16-classes

egmentation task. After obtaining the trained FCN, it localized

hese part point positions in the last convolutional layer. Then,

eep activations corresponding to the fifteen parts and the whole

bject were stacked together. Fully connected layers were used

or classification. Comparing with part-stacked CNN, M-CNN only

eeds to localize two main parts (head and torso), which makes

he segmentation problem much easier and more accurate. M-CNN

chieves high localization accuracy, as will be shown in Table 3 .

eanwhile, as demonstrated in [7] , using all the fifteen part ac-

ivations cannot lead to better classification accuracy. Besides, M-

NN’s accuracy on CUB200-2011 is 2.0% higher than that of [7] us-

ng the same baseline network, although we use less annotations

n training and do not use any annotation in testing. More detailed

mpirical comparisons can be found in Section 4.2 . 

.2. Deep descriptor selection 

As aforementioned, in the deep learning scenario, we might

o longer need to select useful dimensions inside the learnt deep
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Fig. 3. Demonstration of the mask learning procedure by fully convolutional network (FCN) [19] . (Best viewed if in color.) 
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s  
eatures. While, useful deep descriptors are necessary to be se-

ected and noisy descriptors should be discarded, especially for

ne-grained images. The so called “descriptor” here indicates the

 -dimensional component vector of activations in a convolutional

ayer. 

In the line of deep descriptor selection for fine-grained im-

ges, SCDA [18] (Selective Convolutional Descriptor Aggregation)

as proposed recently for dealing with the fine-grained image re-

rieval problem. In SCDA, it employs pre-trained models to first lo-

alize the main object in fine-grained images unsupervisedly. Then,

ased on the results of localization, it treats these deep descriptors

orresponding to the object localization as the useful descriptors,

nd regards the others as background and noises. Thanks to the

escriptor selection scheme, SCDA achieves the best retrieval per-

ormance in the content-based fine-grained image retrieval task.

omparing with SCDA, our proposed method can not only localize

hole objects, but also localize fine-grained parts in a supervised

anner, which achieves much more accurate part localization per-

ormance. Besides, our M-CNN is the first work to demonstrate that

eep descriptor selection is beneficial to fine-grained image recog-

ition . 

. The Mask-CNN model 

In this section, we present the proposed three-stream Mask-

NN (M-CNN) model. Firstly, we adopt a fully convolutional net-

ork (FCN) [19] to generate the object/part masks for locating ob-

ect/parts, and more importantly selecting deep descriptors. Then,

ased on these masks, the three-stream M-CNN is built for joint

raining and capturing both object- and part-level information. 

.1. Learning object and part masks 

The fully convolutional network (FCN) [19] is designed for pixel-

ise labeling. FCN can take an input image with any resolution and

roduce an output of the same size. In our method, we use FCN

o not only localize the object and parts in fine-grained images,

ut also treat the segmentation predictions as the object and parts

asks for the later descriptor selection process. 

Each fine-grained image in the CUB200-2011 [1] and Birdsnap

20] dataset is equipped with part annotations. CUB200-2011 has

fteen part key points for each image, and Birdsnap has seven-

een part key points for each. While, the other fine-grained image

atasets ( e.g. , [4,5,23] ) have no such part annotations. As shown

n Fig. 1 , we split these key points into two sets, including the

ead key points ( i.e. , the beak, forehead, crown, left eye, right eye,

ape and throat for CUB200-2011 ; the beak, forehead, crown, left

ye, right eye, left cheek, right cheek, nape and throat for Birdsnap )

nd torso key points ( i.e. , the back, breast, belly, left leg, right leg,

eft wing, nape, right wing, tail and throat for both CUB200-2011

nd Birdsnap ). Based on the key points, two ground-truth of part

asks are generated. One is the head mask , which corresponds to
he smallest rectangle covering all the head key points. The other

s the torso mask , which is the smallest rectangle covering all the

orso key points. The overlapping part of the two rectangles is re-

arded as the head mask. As shown in Fig. 1 b, the red rectangle

s the head mask, and the blue one is for torso. The rest of the

mage is background. Similar to [39,40] , these bounding-box-like

art masks are treated as the segmentation ground-truth. Thus, we

odel the part mask learning procedure as a three-class segmen-

ation problem. For effective training, all the training and testing

ne-grained images remain at their original resolutions. Then, we

rop a 384 × 384 image patch in the middle of the original image

s the inputs to FCN. The mask learning network architecture is

hown in Fig. 3 . In our experiments, we adopted FCN-8s [19] for

earning and predicting part masks. 

During the FCN inference, without using any annotation, three

lass heat maps (in the same size as the original input image)

re returned for every image. Moreover, the predicted segmenta-

ion class scores are regarded as the learned part weights for the

ater descriptors aggregation process. We randomly choose some

ualitative examples of the predicted part masks, and show them

n Fig. 4 . In these figures, the learned masks are overlaid onto

he original images. The head part is highlighted in red, and the

orso is in blue. The predicted background pixels are in black. As

an be seen from these figures, even though the ground-truth part

asks are not very accurate, the learned FCN model is able to re-

urn more accurate part masks. Meanwhile, these part masks can

lso localize the part positions by finding their enclosing rectan-

les. Moreover, comparing with the segmentation ground-truth (in

he third row of Fig. 4 ), head masks combining with torso masks

an be generally able to segment the foreground object well, even

hough no post-processing ( e.g. , conditional random fields [41,42] )

s used. Quantitative results of part localization and object segmen-

ation will be reported in Section 4.3 and Section 4.4 , respectively. 

Also, there are several failure cases, e.g. , the figures shown in

he right side of Fig. 4 . In some cases, it will treat the branch as

he bird’s torso. Some ones will also detect the head’s and torso’s

eflections in water. In other cases, due to the scale of the main

bject or the complicated background, the torso masks can not be

ntactly predicted. 

For the final recognition performance, both part masks, if ac-

urately predicted, will benefit the later deep descriptor selection

rocess and the final fine-grained classification. Therefore, during

oth the training and testing phases, we will use the predicted

asks for both part localization and descriptor selection in M-CNN.

e also combine the two masks to form a mask for the whole ob-

ect, which is called the object mask . 

.2. Training Mask-CNN 

After obtaining the object and part masks, we build the three-

tream M-CNN for joint training. The overall architecture of the
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Fig. 4. Random samples of successfully predicted part masks (on the left side) and four failure cases (on the right side) from the testing set on the CUB200-2011 [1] and 

Birdsnap [20] dataset, respectively. The first row of each subfigure contains input fine-grained images. The second row are the part masks predictions. In these figures, we 

overlay the part mask predicted by FCN (the head highlighted in red and the torso in blue) onto the original images. The pixels predicted as background are in black. The 

third row in (a) is the corresponding segmentation ground-truth provided in the CUB200-2011 dataset. The Birdsnap dataset does not supply the segmentation ground-truth 

for its fine-grained images. (The figures are best viewed in color.) 
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proposed model is presented in Fig. 2 . We take the whole image

stream as an example to illustrate the pipeline of each stream. 

The inputs of the whole image stream are the original im-

ages resized to h × h . In our experiments, we report the results for

h = 224 and h = 448 , respectively. The input images are fed into

a traditional convolutional neural network, but the fully connected

layers are discarded. That is to say, the CNN model used in our pro-

posed M-CNN only contains convolutional, ReLU and pooling lay-

ers, which greatly brings down the M-CNN model size. Specifically,

we use VGG-16 [21] as the baseline model, and the layers before

pool 5 are kept (including pool 5 ). We obtain a 7 × 7 × 512 activation

tensor in pool 5 if the input image is 224 × 224. Therefore, we have

49 deep convolutional descriptors of 512-d, which also correspond

to 7 × 7 spatial positions in the input images. Then, the learned ob-

ject mask (cf. Section 3.1 ) is firstly resized to 7 × 7 by the bilinear

interpolation, and then used for selecting useful and meaningful

deep descriptors. 
As illustrated in Fig. 2 c and Fig. 2 d, the descriptor should be

ept by weights when it locates in the object region. If it locates in

he background region, that descriptor will be discarded. In our im-

lementation, the mask contains the learned part/object segmenta-

ion scores, which is a real matrix whose elements are in the range

f [0, 1]. Correspondingly, 1 stands for absolutely keeping and 0 is

or absolutely discarding. We implement the selection process as

n element-wise product operation between the convolutional ac-

ivation tensor and the mask matrix. Therefore, the descriptors lo-

ated in the object region will remain by weights, while the other

escriptors will become zero vectors. Concretely, if the pixels are

redicted as head/torso by FCN, the real values of the mask are

ept. Otherwise, if the pixels indicate the regions are background,

he value of these background regions in the mask are reset to the

ero value. Then, the processed masks are used for selecting de-

criptors and the rest processing. 
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Fig. 5. Testing stage of Mask-CNN. (Best viewed if in color.) 
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For these selected descriptors, in the end-to-end M-CNN learn-

ng process, we both average and max pool them into two 512-d

eature vectors, respectively. Then, the � 2 -normalization is followed

or each of them. After that, we concatenate them into an 1024-d

eature as the final representation of the whole image stream. 

The streams for head and torso have similar processing steps

s the whole image one. However, different from the inputs of the

hole image stream, we generate the input images of the head

nd torso streams as follows. After obtaining the two part masks,

e use the part masks as the part detectors to localize the head

art and torso part in the input images. For each part, we return

he smallest rectangle bounding box which contains the part mask

egions. Based on the rectangle bounding box, we crop the image

atch which acts as the inputs of the part stream. The last two

treams of Fig. 2 show the head and torso streams in M-CNN. The

nputs of these two streams are all resized into 224 × 224 in our

xperiments. 

In the classification step shown in Fig. 2 f, the final 3,072-d im-

ge representation is the concatenation of the whole image, the

ead and the torso features. The last layer of M-CNN is a 200-

ay classification (fc+softmax) layer for recognition on CUB200-

011 and a 500-way classification layer on Birdsnap , respectively.

he three-stream M-CNN is learned end-to-end, with the parame-

ers of three CNNs learned simultaneously. During training M-CNN,

he parameters of the learned FCN segmentation network are fixed.

.3. Testing stage of Mask-CNN 

During inference, when facing with a testing image, the learned

CN model firstly returns the corresponding mask predictions for

oth head and torso. Then, based on the masks, we use them as

he part detectors to localize the head part and torso part in the

nput images. The extracted head and torso image patches are re-

arded as the inputs for the head and torso streams in Mask-CNN.

fter obtaining the convolutional descriptors through the convo-

ution layers of three-stream Mask-CNN, the predicted masks are

mployed again. While, at this time, the masks are utilized for se-

ecting descriptors (cf. Fig. 5 (e)). At last, the selected descriptors

re aggregated following the strategy in the training stage, and

hen we can get the predicted label based on the 3,072-d final im-
ge representation. The whole testing stage of Mask-CNN is shown

n Fig. 5 . 

. Experiments 

In this section, we firstly describe the experimental settings and

mplementation details. Then, we report the classification accuracy.

he performance of part localization and object segmentation will

lso be provided. Finally, we present some discussions about the

roposed M-CNN model. 

.1. Dataset and implementation details 

Following the other published part-based fine-grained methods

7,8,10] , we perform the empirical evaluation on the widely-used

ne-grained benchmark Caltech-UCSD 2011 bird dataset [1] and

irdsnap [20] dataset. The CUB200-2011 dataset contains 200 bird

ategories, and each category has roughly 30 training images. To-

ally, there are 5994 training images and 5794 test images in that

ataset. For the Birdsnap dataset, it contains 500 North Ameri-

an bird species whose images having 47,386 images for training

nd 2443 images for test, which is much larger and challenging

han CUB200-2011 . We follow the training and testing splitting in-

luded with these two datasets. In the training phase, the fifteen

art annotations of each dataset are adopted for generating the

art masks’ ground-truth, and meanwhile the image-level labels

re used for the end-to-end M-CNN joint training. We need no su-

ervision signals ( e.g. , part annotations or bounding boxes) when

esting. 

The proposed Mask-CNN model and FCN used for generating

asks are implemented using the open-source library MatConvNet

43] . In our experiments, after getting the learned part masks, we

rstly generate the image patches of birds’ head and torso as de-

cribed in Section 3.2 . Then, to facilitate the convergence of three-

tream CNNs, each single stream corresponding to the whole im-

ge, head and torso is fine-tuned on its input images separately.

he CNNs used in each stream is initialized by the popular VGG-

6 model [21] pre-trained on ImageNet. The loss function in each

tream is the popular used cross-entropy loss function. For fair

omparisons with other methods ( e.g. , [7,8,10] ), we also implement

ur three-stream M-CNN model based on the Alex-Net model [15] .



710 X.-S. Wei et al. / Pattern Recognition 76 (2018) 704–714 

Table 2 

Comparison of classification accuracy on Birdsnap with state-of-the-art methods. Note that, “Model” describes the deep 

models used in these methods. We do not list the inference speeds on this dataset, because the inference speeds on 

Birdsnap is similar to the speeds on CUB200-2011 . 

Method Train phase Test phase Model Dim. Acc. 

BBox Parts BBox Parts 

MixDCNN [45] � GoogLeNet × 1 6144 74.1% 

Multi-grained [46] � VGG-19 × 3 12,288 74.8% 

Multi-grained [46] VGG-19 × 3 12,288 65.9% 

Our 3-stream M-CNN (Alex-Net) � Alex-Net (w/o FCs) × 3 1,536 64.8% 

Our 3-stream M-CNN (VGG-16) � VGG-16 (w/o FCs) × 3 3,072 77.3% 

Our 3-stream M-CNN (ResNet-50) � ResNet-50 × 3 12,288 80.2% 

Table 3 

Comparison of part localization performance on the CUB200-2011 dataset. 

Method Train phase Test phase Head Torso 

BBox Parts BBox Parts 

Strong DPM [32] � � � 43.49% 75.15% 

Part-based R-CNN with BBox [10] � � � 68.19% 79.82% 

Deep LAC [8] � � � 74.00% 96.00% 

Part-based R-CNN [10] � � 61.42% 70.68% 

Ours (Alex-Net based FCN) � 81.22% 91.72% 

Ours (VGG-16 based FCN) � 86.76% 91.87% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

l

 

t  

a  

C  

s  

s  

[  

(  

i  

fi

 

b  

[  

i  

C  

a  

t  

t

4

 

T  

i  

2  

B  

g  

e

4

 

S  

c  

m

 

c  

c  

b  

t  

p  
In addition, we double the training data by a horizontal flipping for

all the three streams. After fine-tuning on each stream, as shown

in Fig. 2 , the joint training of three-stream M-CNN is performed.

Dropout is not used in M-CNN. At the test time, we average the

predictions of the image and its flipped copy, and output the class

with the highest score as the prediction for a test image. In addi-

tion, directly using the softmax predictions results is a slight drop

in accuracy compared to logistic regression (LR), which is con-

sistent with the observations in [27] . Therefore, in the following,

the reported results of M-CNN are all achieved by one-vs-all lo-

gistic regression [44] on the extracted features of three-stream M-

CNNs with the default hyper-parameter C LR = 1 . Upon acceptance,

we will release our source code and trained models, so that all re-

sults in the paper can be reproduced. All the experiments are run

on a computer with Intel Xeon E5-2660 v3, 64G main memory,

and an Nvidia Tesla K40 GPU. 

4.2. Comparisons with state-of-the-art methods 

In this section, we compare our proposed M-CNN with state-of-

the-arts on CUB200-2011 and Birdsnap , respectively. 

4.2.1. Results on CUB200-2011 

We report the classification accuracy on the CUB200-2011

dataset of the proposed three-stream M-CNN model, and compare

with the baseline methods and state-of-the-art methods in the lit-

erature. The classification results are presented in Table 1 . For fair

comparison, we only report the results when they do not use part

annotations in testing. 

At first, the input images of the three streams are all resized

to 224 × 224. The classification accuracy of M-CNN is 84.2%. Fol-

lowing [7,27] , we change the input images of the whole image

stream to 448 × 448 pixels. It improves the classification perfor-

mance by 1.5%, which achieves the best classification accuracy

85.7% on CUB200-2011 . Moreover, when using the Residual Net-50

[22] architecture, three-stream M-CNN obtains 87.3% accuracy. 

For comparisons of the final classification accuracy on CUB200-

2011 , since there is no previous work in the same experimental

setting ( i.e. , only using the part annotation in training) as ours,

we divide the previous work into two kinds of fine-grained meth-

ods: the first one are the methods using the part annotations ( e.g. ,
7,8,10,30] ), and the second one are the methods using only image-

evel labels ( e.g. , [11,26,27,33–35,38,45,46] ). 

On one hand, comparing with the methods using the part anno-

ations, part-stacked CNN [7] was one of state-of-the-arts, which is

 strong baseline of Mask-CNN. Specifically, because part-stacked

NN used the Alex-Net model [15] , we also build another three-

tream M-CNN based on Alex-Net. The accuracy of our three-

tream M-CNN (Alex-Net) is 78.6%. It is 2.0% higher than that of

7] . Meanwhile, the inference speed of our three-stream M-CNN

Alex-Net) is 33.9 FPS, which is much faster than 20 FPS reported

n [7] . Moreover, in the Alex-Net based three-stream M-CNN, the

nal feature vector is only 1,536-dimensional. 

On the other hand, for the methods using only image-level la-

els, such as PDFS [35] , Spatial Transformer CNN [26] and Bilinear

27] , they are two outstanding fine-grained methods using only the

mage-level supervisions. The classification accuracy of our Mask-

NN is 1.2% and 1.6% higher than PDFS and STCNN, respectively. It

lso validates the effectiveness of our proposed method. Moreover,

he image representation of M-CNN has lower feature dimensions

han that of Bilinear [27] and PDFS [35] . 

.2.2. Results on birdsnap 

The classification accuracy on Birdsnap is reported in Table 2 .

he input images of the whole image stream are of the 448 × 448

mage resolution. The input images of the other streams are of

24 × 224. Comparing with the previous methods conducted on

irdsnap , our proposed M-CNN outperforms them by a large mar-

in. Meanwhile, the small dimensionality bring it scalability and

fficiency in large-scale datasets. 

.3. Part localization results 

In addition to the qualitative part localization results shown in

ection 3.1 , in this section, we quantitatively assess the localization

orrectness using the Percentage of Correctly Localized Parts (PCP)

etric. 

As reported in Table 3 , the metrics of CUB200-2011 are the per-

entage of parts ( i.e. , the head and torso) that are correctly lo-

alized with a > 50% IOU with the ground-truth part bounding

oxes as generated in [8,10] . Comparing the results of PCP for

orso, our method (no matter based on VGG-16 or Alex-Net) out-

erforms part-based R-CNN [10] and strong DPM [32] by a large
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Table 4 

Comparison with the baseline methods on CUB200-2011 and Birdsnap . For all the models, the inputs 

of the whole image stream are 224 × 224 for fair comparisons. The inference speed contains both part 

masks predictions and the final classification process. 

Model 3-stream FCs 3-stream Pooling The proposed 3-stream M-CNN 

Descriptor selection ✗ ✗ � 

Accuracy on CUB200-2011 81.4% 82.8% 84.2% 

Accuracy on Birdsnap 73.0% 74.3% 76.0% 

Inference speed 9.2 FPS 13.0 FPS 12.9 FPS 
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argin. However, because we do not use any annotation in test-

ng, the localization performance is lower than the one of Deep

AC [8] which used the bounding boxes during testing. In addi-

ion, for the head localization task which is more challenging than

he torso one, even though our method just uses part annotations

n training, the head localization performance (86.76% for VGG-16

ased, and 81.22% for Alex-Net based) is still significantly higher

han the other methods. 

Additionally, the head and torso localization accuracy on Bird-

nap of our method are 67.40% and 78.87% based on Alex-Net, and

4.51% and 84.45% based on VGG-16, respectively. Since there is no

revious results on part localization on Birdsnap in the literature,

e further conducted experiments using the released source codes

f Part-based R-CNN [10] for comparisons. When utilizing part an-

otations and bounding boxes of the Birdsnap dataset, the part lo-

alization accuracy of Part-based R-CNN are 49.97% and 74.86% for

ead and torso, respectively. Particularly, the head localization ac-

uracy of our method (no matter based on Alex-Net or VGG-16)

s significantly higher than the accuracy of Part-based R-CNN. The

bservations of Birdsnap are consistent with the localization results

f CUB200-2011 . 

.4. Object segmentation performance 

Because the CUB200-2011 dataset also supplies the object seg-

entation ground-truth, we can directly test the learned object

asks on the segmentation metric. The figures in the second row

f Fig. 4 show qualitative segmentation results. Our method based

n FCN is generally able to segment the foreground object well,

ut understandably has trouble to segment the birds’ finer de-

ails, e.g. , claws and beak. Since our goal is not to segment ob-

ects, we do not perform any refinement as pre-processing or post-

rocessing. We evaluate the segmentation performance quantita-

ively by the common semantic segmentation metric mean IU (re-

ion intersection over union) between the ground truth foreground

bject and the predicted object masks. It is 74.59% on the testing

et. In fact, a better segmentation result will lead to better pre-

icted object/part masks, and also benefit the final classification.

o further improve the classification accuracy, some pre-processing

ethods, e.g. , GrabCut [47] , are worth trying to obtain better mask

round-truth than the rectangles in Fig. 3 c. 

.5. Ablation and diagnostic experiments 

In this section, we conduct ablation experiments on both the

UB200-2011 and Birdsnap dataset, and present discussions of the

roposed three-stream M-CNN model. The experimental results are

ll based on M-CNN with the VGG-16 architecture. 

.5.1. Is descriptor selection effective? 

In order to clearly validate the effectiveness of the descriptor

election process in M-CNN, we perform two baseline methods

hich are also based on the proposed three-stream architecture.

ifferent from our M-CNN, these two baseline methods do not

ontain the descriptor selection part, i.e. , the processing shown in

ig. 2 d. 
The first baseline method employ the traditional fully con-

ected layers to conduct classification for each stream, which is

alled “3-stream FCs”. In “3-stream FCs”, we replace the (b) to (e)

arts of each stream in Fig. 2 with a CNN containing fully con-

ected layers ( i.e. , VGG-16 with only fc 8 removed). Thus, the gen-

rated feature in the last layer of each stream is a 4,096-d single

ector. The rest procedure is also to concatenate the three 4,096-d

eatures into the final one with 12,288-d, and to learn a 200-way

or 500-way) classification (fc+softmax) layer on the 12,288-d im-

ge representation. 

The second baseline is similar to the proposed M-CNN. The

ost prominent difference is that it discards the descriptor se-

ection part, i.e. , the processing in Fig. 2 d. Thus, the convolutional

eep descriptors of pool 5 in each stream are directly average and

ax pooled, and then � 2 -normalized, respectively. Therefore, we

all it the “3-stream Pooling”. The remaining procedures are the

ame as the proposed M-CNN. 

Table 4 presents the comparison of classification accuracy and

nference speed on the CUB200-2011 and Birdsnap dataset. Be-

ause CNN models with fully connected layers require the inputs

f 224 × 224, the input images of these three compared methods

n Table 4 are all 224 × 224. In that table, the proposed M-CNN

chieves the best classification accuracy rate. Due to the missing

f descriptor selection, “3-stream Pooling” is about 1.4% lower than

-CNN on CUB200-2011 and 1.7% on Birdsnap . The “3-stream FCs”

aseline method has the lowest accuracy. Its lower accuracy might

e caused by the fully connected layers, which may have caused

verfitting. 

In addition, the feature extraction speeds (frames/sec) on a

esla K40 GPU for these methods using our MatConvNet based im-

lementation are shown on the bottom of Table 4 . The speeds are

onducted on the CUB200-2011 dataset, and the Birdsnap dataset

as the similar inference speeds. In addition, please note that, for

hese streams models, the speeds are the serial computing speeds.

hat is to say, a GPU is used for inference one stream by one

tream (whole image → head → torso). The inference speed of the

roposed M-CNN is almost the same as the “3-stream Pooling”

aseline model without selecting descriptor, and is 3.7 FPS faster

han the baseline with fully connected layers. Besides, as the input

mages in the whole image stream are of 224 × 224, the inference

peed (12.9 FPS) is faster than the one whose inputs are 448 × 448

8.3 FPS). 

For further validating the effectiveness of selecting descriptors,

e also change the inputs of the whole image stream in “3-stream

ooling” to 448 × 448, which can get 84.5% on CUB200-2011 (76.0%

n Birdsnap ). It is still 1.2% (1.3%) lower than the classification ac-

uracy of our three-stream M-CNN (cf. 85.7% in Table 1 and 77.3%

n Table 2 ). 

.5.2. How important are different streams? 

We here investigate what different streams contribute to the fi-

al recognition performance. Table 5 reports the classification ac-

uracy of M-CNN containing different streams. When it only has

he whole image stream, on CUB200-2011 , the accuracy is 80.5%.

y incorporating the head and torso stream, after joint training, the
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Table 5 

Comparison of M-CNN with different streams on the CUB200-2011 and Birdsnap 

dataset. 

Dataset Stream Accuracy 

Image Head Torso 

CUB200-2011 � 80.5% 

� � 84.2% 

� � 82.1% 

� � � 85.7% 

Birdsnap � 72.7% 

� � 76.2% 

� � 73.6% 

� � � 77.3% 

Table 6 

Comparison of the three-stream M-CNN model with different pooling strategies on 

the CUB200-2011 and Birdsnap dataset. 

Accuracy Pooling Accuracy 

Ave.-pool Max-pool 

CUB200-2011 � 85.1% 

� 85.4% 

� � 85.7% 

Birdsnap � 77.1% 

� 76.9% 

� � 77.3% 
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accuracy increases to 85.7% until containing both two part streams.

From that table, we can find the head stream could be more im-

portant/discriminative than the torso stream. After incorporating

the head stream, the original whole image stream can improve

3.7% (80.5% → 84.2%). However, incorporating the torso stream, it

just increases 1.6% accuracy (80.5% → 82.1%). Additionally, compar-

ing with the results of two-stream ( i.e. , the second and third row)

and three-stream ( i.e. , the last row) in Table 5 separately, we can

see that: adding the torso stream improves the accuracy by 1.5%

(84.2% → 85.7%), while adding the head one can improve it by

3.6% (82.1% → 85.7%). Besides, similar observations can be found on

Birdsnap . 

4.5.3. Are different pooling strategies necessary? 

In M-CNN, we propose to concatenate both the average- and

max-pooled features in each stream as the final representations.

In the following, the diagnostic experiments on different pooling

strategies are presented. As shown in Table 6 , on CUB200-2011 ,

the proposed M-CNN (average-pooling+max-pooling, 85.7%) out-

performs the ones with only average-pooled features (85.1%) or

only max-pooled features (85.4%). For Birdsnap , different pooling

ensemble can also improve the classification accuracy up to 77.3%.

Therefore, different pooling strategies used in M-CNN is necessary

for the final classification accuracy. 

4.5.4. Can M-CNN share the previous layers between different 

streams? 

Because the early layers of CNNs usually correspond to low-

level visual atoms ( e.g. , orientated edges, bars or blobs) [48] , we at-

tempt to combine the first ten layers (from “conv 1 _ 1 with relu 1 _ 1 ”

to “conv 2 _ 1 , relu 2 _ 1 with pool 2 ”) in VGG-16 as layer sharing, and

jointly train the new three-stream M-CNN. However, the accuracy

of the layer sharing M-CNN is only 82.1% on CUB200-2011 (73.6%

on Birdsnap ), which are significantly worse than 85.7% (77.3%) of

the proposed M-CNN. But, the result of layer sharing justifies the

separate design of the three-stream M-CNN’s architecture. 
. Conclusion 

In this paper, we presented the benefits of selecting deep con-

olutional descriptor in object recognition, especially fine-grained

mage recognition. By developing the descriptor selection scheme,

e proposed a novel end-to-end Mask-CNN (M-CNN) model with-

ut the fully connected layers to not only accurately localize ob-

ect/parts, but also generate weighted object/part masks for se-

ecting deep convolutional descriptors. After aggregating the se-

ected descriptors, the object-level and part-level cues were en-

oded by the proposed three-stream M-CNN model. Mask-CNN not

nly achieved a new state-of-the-art bird species classification ac-

uracy on CUB200-2011 and Birdsnap , but also had the lowest di-

ensional feature representations. 

In the future, we plan to solve the part detection problem of

-CNN in the weakly supervised setting, in which we only require

he image-level labels. Thus, it will require far less labeling effort

o achieve comparable classification accuracy. In addition, another

nteresting direction is to explore the benefits of descriptor selec-

ion for generic object categorization. 

cknowledgement 

This research was supported by the National Natural Science

oundation of China under Grant 61772256 and Grant 61422203 ,

he Collaborative Innovation Center of Novel Software Technology

nd Industrialization. The authors would like to thank Qichang Hu,

ian-Hao Luo for reading the draft, and thank the anonymous re-

iewers, whose comments have helped improving this paper. 

eferences 

[1] C. Wah , S. Branson , P. Welinder , P. Perona , S. Belongie , The caltech-UCSD
birds-200-2011 dataset, Tech. Report CNS-TR-2011-001 (2011) . 

[2] P. Welinder , S. Branson , T. Mita , C. Wah , F. Schroff, S. Belongie , P. Perona , Cal-

tech-UCSD birds 200, Technical Report, California Institute of Technology, 2010 .
[3] A. Angelova , S. Zhu , Y. Lin , Image segmentation for large-scale subcategory

flower recognition, in: Proceedings of Applications of Computer Vision, Clear-
water Beach, FL, Jan. 2013, pp. 39–45 . 

[4] M.-E. Nilsback , A. Zisserman , Automated flower classification over a large
number of classes, in: Proceedings of Indian Conference on Computer Vision,

Graphics and Image Processing, Bhubaneswar, India, Dec. 2008, pp. 722–729 . 

[5] J. Krause , M. Stark , J. Deng , L. Fei-Fei , 3D object representations for fine-grained
categorization, in: Proceedings of IEEE International Conference on Computer

Vision Workshop on 3D Representation and Recognition, Sydney, Australia,
Dec. 2013 . 

[6] T. Berg , P. Belhumeur , POOF: Part-based one-vs.-one features for fine-grained
categorization, face verification and attribute estimation, in: Proceedings of

IEEE International Conference on Computer Vision, Portland, Oregon, Jun. 2013,

pp. 955–962 . 
[7] S. Huang , Z. Xu , D. Tao , Y. Zhang , Part-stacked CNN for fine-grained visual cate-

gorization, in: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, Jun. 2016, pp. 1173–1182 . 

[8] D. Lin , X. Shen , C. Lu , J. Jia , Deep LAC: Deep localization, alignment and
classification for fine-grained recognition, in: Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition, Boston, MA, Jun. 2015,

pp. 1666–1674 . 
[9] S. Maji , G. Shakhnarovich , Part and attribute discovery from relative annota-

tions, Int. J. Comput. Vis. 108 (1–2) (2014) 82–96 . 
[10] N. Zhang , J. Donahue , R. Girshick , T. Darrell , Part-based R-CNNs for fine-grained

category detection, in: D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Euro-
pean Conference on Computer Vision, Part I, LNCS 8689, Springer, Switzerland,

Zürich, Switzerland, Sept. 2014, pp. 834–849 . 

[11] Y. Zhang , X.-S. Wei , J. Wu , J. Cai , J. Lu , V.-A. Nguyen , M.N. Do. , Weakly super-
vised fine-grained categorization with part-based image representation, IEEE

Trans. Image Process. 25 (4) (2016) 1713–1725 . 
[12] G.-S. Xie , X.-Y. Zhang , W. Yang , M. Xu , S. Yan , C.-L. Liu , LG-CNN: From local

parts to global discrimination for fine-grained recognition, Pattern Recognit.
71 (2017) 118–131 . 

[13] S.H. Lee , C.S. Chan , S.J. Mayo , P. Remagnino , How deep learning extracts and
learns leaf features for plant classification, Pattern Recognit. 71 (2017) 1–13 . 

[14] M.D. Zeiler , G.W. Taylor , R. Fergus , Adaptive deconvolutional networks for mid

and high level feature learning, in: Proceedings of IEEE International Confer-
ence on Computer Vision, Sydney, Australia, Dec. 2013, pp. 2018–2025 . 

[15] A. Krizhevsky , I. Sutskever , G.E. Hinton , ImageNet classification with deep con-
volutional neural networks, in: Advances in Neural Information Processing Sys-

tems, Lake Tahoe, NV, Dec. 2012, pp. 1097–1105 . 

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0004
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0004
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0004
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0015


X.-S. Wei et al. / Pattern Recognition 76 (2018) 704–714 713 

 

 

 

 

 

 

 

 

[  

 

 

 

 

[  

 

[  

 

 

 

 

[  

 

 

[  

 

 

 

[  

 

[  

 

[  

 

 

 

[  

 

 

 

 

 

[  

 

 

 

 

 

[  

 

 

[  

 

[  

 

 

[  

 

 

 

 

[  

 

[  

 

[  

[  

 

 

[  

 

 

[  

 

 

[16] A. Eigenstetter , B. Ommer , Visual recognition using embedded feature selec-
tion for curvature self-similarity, in: Advances in Neural Information Process-

ing Systems, Lake Tahoe, NV, Dec. 2012, pp. 377–385 . 
[17] Y. Zhang , J. Wu , J. Cai , Compact representation for image classification: To

choose or to compress? in: Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition, Columbus, OH, Jun. 2014, pp. 907–914 . 

[18] X.-S. Wei , J.-H. Luo , J. Wu , Z.-H. Zhou , Selective convolutional descriptor aggre-
gation for fine-grained image retrieval, IEEE Trans. Image Process. 26 (6) (2017)

2868–2881 . 

[19] J. Long , E. Shelhamer , T. Darrell , Fully convolutional networks for semantic seg-
mentation, in: Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, Boston, MA, Jun. 2015, pp. 3431–3440 . 
20] T. Berg , J. Liu , S.W. Lee , M.L. Alexander , D.W. Jacobs , P.N. Belhumeur , Birdsnap:

Large-scale fine-grained visual categorization of birds, in: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH, Jun.

2014, pp. 2019–2026 . 

[21] K. Simonyan , A. Zisserman , Very deep convolutional networks for large-scale
image recognition, in: Proceedings of International Conference on Learning

Representations, San Diego, CA, May. 2015, pp. 1–14 . 
22] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition, in:

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, Jun. 2016, pp. 770–778 . 

23] A. Khosla , N. Jayadevaprakash , B. Yao , L. Fei-Fei , Novel dataset for fine-grained

image categorization, in: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition Workshop on Fine-Grained Visual Categorization, Col-

orado Springs, CO, Jun. 2011, pp. 806–813 . 
[24] O.M. Parkhi , A . Vedaldi , A . Zisserman , C.V. Jawahar , Cats and dogs, in: Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition, Jun.
2012, pp. 3498–3505 . Providence, RI 

25] E. Rodner , M. Simon , G. Brehm , S. Pietsch , J.W. Wägele , J. Denzler , Fine-grained

recognition datasets for biodiversity analysis, in: Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshop on Fine-grained

Visual Classification, Boston, MA, Jun. 2015 . 
26] M. Jaderberg , K. Simonyan , A. Zisserman , K. Kavukcuoglu , Spatial transformer

networks, in: Advances in Neural Information Processing Systems, Montréal,
Canada, Dec. 2015, pp. 2008–2016 . 

[27] T.-Y. Lin , A. RoyChowdhury , S. Maji , Bilinear CNN models for fine-grained visual

recognition, in: Proceedings of IEEE International Conference on Computer Vi-
sion, Sandiago, Chile, Dec. 2015, pp. 1449–1457 . 

28] S. Gao , I.W.-H. Tsang , Y. Ma , Learning category-specific dictionary and shared
dictionary for fine-grained image categorization, IEEE Trans. Image Process. 23

(2) (2014) 623–634 . 
29] H. Yao , S. Zhang , Y. Zhang , J. Li , Q. Tian , Coarse-to-fine description for

fine-grained visual categorization, IEEE Trans. Image Process. 25 (10) (2016)

4 858–4 872 . 
30] S. Branson , G.V. Horn , S. Belongie , P. Perona , Bird species categorization using

pose normalized deep convolutional nets, in: British Machine Vision Confer-
ence, Nottingham, England, Sept. 2014, pp. 1–14 . 

[31] E. Gavves , B. Fernando , C.G. Snoek , A.W. Smeulders , T. Tuytelaars , Local align-
ments for fine-grained categorization, Int. J. Comput. Vis. 111 (2) (2014)

191–212 . 
32] H. Azizpour , I. Laptev , Object detection using strongly-supervised deformable

part models, in: A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, C. Schmid (Eds.),

European Conference on Computer Vision, Part I, LNCS 7572, Springer, Heidel-
berg, Firenze, Italy, Oct. 2012, pp. 836–849 . 
[33] M. Simon , E. Rodner , Neural activation constellations: Unsupervised part
model discovery with convolutional networks, in: Proceedings of IEEE In-

ternational Conference on Computer Vision, Sandiago, Chile, Dec. 2015,
pp. 1143–1151 . 

34] T. Xiao , Y. Xu , K. Yang , J. Zhang , Y. Peng , Z. Zhang , The application of two-level
attention models in deep convolutional neural network for fine-grained im-

age classification, in: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, Jun. 2015, pp. 842–850 . 

[35] X. Zhang , H. Xiong , W. Zhou , W. Lin , Q. Tian , Picking deep filter responses for

fine-grained image recognition, in: Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, Las Vegas, NV, Jun. 2016, pp. 1134–1142 .

36] L. Zhang , Y. Yang , M. Wang , R. Hong , L. Nie , X. Li , Detecting densely distributed
graph patterns for fine-grained image categorization, IEEE Trans. Image Pro-

cess. 25 (2) (2016) 553–565 . 
[37] J.R.R. Uijlings , K.E.A. van de Sande , T. Gevers , A.W.M. Smeulders , Selective

search for object recognition, Int. J. Comput. Vis. 104 (2) (2013) 154–171 . 

38] J. Krause , H. Jin , J. Yang , L. Fei-Fei , Fine-grained recognition without part an-
notations, in: Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, Boston, MA, Jun. 2015, pp. 5546–5555 . 
39] J. Dai , K. He , J. Sun , Boxsup: Exploiting bounding boxes to supervise con-

volutional networks for semantic segmentation, in: Proceedings of IEEE
International Conference on Computer Vision, Sandiago, Chile, Dec. 2015,

pp. 1635–1643 . 

40] G. Papandreou , L.-C. Chen , K. Murphy , A. Yuille , Weakly- and semi-supervised
learning of a deep convolutional network for semantic image segmentation, in:

Proceedings of IEEE International Conference on Computer Vision, Sandiago,
Chile, Dec. 2015, pp. 1742–1750 . 

[41] P. Krähenbühl , V. Koltun , Efficient inference in fully connected CRF with Guas-
sian edge potentials, in: Advances in Neural Information Processing Systems,

Granada, Spain, Dec. 2011, pp. 109–117 . 

42] L. Ladicky , C. Russell , P. Kohli , P.H. Torr , Associate hierarchical crfs for object
class image segmentation, in: Proceedings of IEEE International Conference on

Computer Vision, Kyoto, Japan, Sept. 2009, pp. 739–746 . 
43] A. Vedaldi, K. Lenc, MatConvNet – Convolutional Neural Networks for MAT-

LAB, in: Proceeding of ACM International Conference on Multimedia, Brisbane,
Australia, Oct. 2015, pp. 689–692 . http://www.vlfeat.org/matconvnet/ . 

44] R.-E. Fan , K.-W. Chang , C.-J. Hsieh , X.-R. Wang , C.-J. Lin , LIBLINEAR: A library

for large linear classification, J. Mach. Learn. Res. 9 (2008) 1871–1874 . 
45] Z.Y. Ge , A. Bewley , C. McCool , P. Corke , B. Upcroft , C. Sanderson , Fine-grained

classification via mixture of deep convolutional neural networks, in: Proceed-
ings of IEEE Winter Applications of Computer Vision, Lake Placid, NY, Mar.

2016, pp. 1–6 . 
46] D. Wang , Z. Shen , J. Shao , W. Zhang , X. Xue , Z. Zhang , Multiple granularity de-

scriptors for fine-grained categorization, in: Proceedings of IEEE International

Conference on Computer Vision, Sandiago, Chile, Dec. 2015, pp. 2399–2406 . 
[47] C. Rother , V. Kolmogorov , A. Blake , GrabCut: Interactive foreground extraction

using iterated graph cuts, ACM Trans. Graph. 23 (2004) 309–314 . 
48] M. Zeiler , R. Fergus , Visualizing and Understanding Convolutional Neural Net-

works, in: D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), European Con-
ference on Computer Vision, Part I, LNCS 8689, Springer, Switzerland, Zürich,

Switzerland, Sept. 2014, pp. 818–833 . 

http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0019
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0019
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0019
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0019
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0021
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0021
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0021
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0027
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0027
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0027
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0027
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0029
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0029
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0029
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0029
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0029
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0029
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0033
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0033
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0033
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0037
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0037
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0037
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0037
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0037
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0039
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0039
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0039
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0039
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0041
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0041
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0041
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0042
http://www.vlfeat.org/matconvnet/
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0047
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0047
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0047
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0047
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0048
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0048
http://refhub.elsevier.com/S0031-3203(17)30399-0/sbref0048


714 X.-S. Wei et al. / Pattern Recognition 76 (2018) 704–714 

2. He is currently pursuing the Ph.D. degree with the Department of Computer Science 
n and machine learning. He received the first prize in the Apparent Personality Analysis 

he Cultural Event Recognition Competition (in association with ICCV 2015) as the Team 

is currently a postgraduate student in the Department of Computer Science and Technol- 

achine learning. 

ersity, and his PhD degree in computer science from the Georgia Institute of Technology. 
at Nanjing University, China, and is associated with the National Key Laboratory for Novel 

logical University, Singapore, and has served as an area chair for CVPR 2017, ICCV 2015, 
ognition Journal. His research interests are computer vision and machine learning. 

. He is a Project Leader and Chief Investigator at the Australian Research Council Centre 

earning for robotic vision. Before he moved to Adelaide as a Senior Lecturer, he was with 
Laboratory for about six years. His research interests are in the intersection of computer 

n National University, and received his PhD degree from the University of Adelaide. From 
Xiu-Shen Wei received the B.S. degree in computer science and technology in 201
and Technology, Nanjing University, China. His research interests are computer visio

competition (in association with ECCV 2016) and the first RunnerUp Award from t
Director. 

Chen-Wei Xie received his BS degree from Southeast University, China, in 2015. He 

ogy, Nanjing University, China. His research interests include computer vision and m

Jianxin Wu received his BS and MS degrees in computer science from Nanjing Univ
He is currently a professor in the Department of Computer Science and Technology 

Software Technology, China. He was an assistant professor in the Nanyang Techno
senior PC member for AAAI 2017, AAAI 2016 and an associate editor for Pattern Rec

Chunhua Shen is a Professor at School of Computer Science, University of Adelaide

of Excellence for Robotic Vision (ACRV), for which he leads the project on machine l
the computer vision program at NICTA (National ICT Australia), Canberra Research 

vision and statistical machine learning. He studied at Nanjing University, at Australia

2012 to 2016 he held an Australian Research Council Future Fellowship. 


	Mask-CNN: Localizing parts and selecting descriptors for fine-grained bird species categorization
	1 Introduction
	2 Related work
	2.1 Fine-grained image recognition
	2.2 Deep descriptor selection

	3 The Mask-CNN model
	3.1 Learning object and part masks
	3.2 Training Mask-CNN
	3.3 Testing stage of Mask-CNN

	4 Experiments
	4.1 Dataset and implementation details
	4.2 Comparisons with state-of-the-art methods
	4.2.1 Results on CUB200-2011
	4.2.2 Results on birdsnap

	4.3 Part localization results
	4.4 Object segmentation performance
	4.5 Ablation and diagnostic experiments
	4.5.1 Is descriptor selection effective?
	4.5.2 How important are different streams?
	4.5.3 Are different pooling strategies necessary?
	4.5.4 Can M-CNN share the previous layers between different streams?


	5 Conclusion
	 Acknowledgement
	 References


