
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3048

Deep Descriptor Transforming for Image Co-Localization∗

Xiu-Shen Wei1, Chen-Lin Zhang1, Yao Li2, Chen-Wei Xie1,
Jianxin Wu1, Chunhua Shen2, Zhi-Hua Zhou1

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2The University of Adelaide, Adelaide, Australia

{weixs,zhangcl,xiecw,wujx,zhouzh}@lamda.nju.edu.cn, {yao.li01,chunhua.shen}@adelaide.edu.au

Abstract
Reusable model design becomes desirable with the
rapid expansion of machine learning applications. In
this paper, we focus on the reusability of pre-trained
deep convolutional models. Specifically, different
from treating pre-trained models as feature extrac-
tors, we reveal more treasures beneath convolutional
layers, i.e., the convolutional activations could act
as a detector for the common object in the image co-
localization problem. We propose a simple but effec-
tive method, named Deep Descriptor Transforming
(DDT), for evaluating the correlations of descriptors
and then obtaining the category-consistent regions,
which can accurately locate the common object in a
set of images. Empirical studies validate the effec-
tiveness of the proposed DDT method. On bench-
mark image co-localization datasets, DDT consis-
tently outperforms existing state-of-the-art methods
by a large margin. Moreover, DDT also demon-
strates good generalization ability for unseen cate-
gories and robustness for dealing with noisy data.

1 Introduction
Model reuse [Zhou, 2016] attempts to construct a model by
utilizing existing available models, mostly trained for other
tasks, rather than building a model from scratch. Particularly
in deep learning, since deep convolutional neural networks
have achieved great success in various tasks involving images,
videos, texts and more, there are several studies have the flavor
of reusing deep models pre-trained on ImageNet [Russakovsky
et al., 2015].

In machine learning, the Fixed Model Reuse scheme [Yang
et al., 2017] is proposed recently for using the sophisticated
fixed model/features from a well-trained deep model, rather
than transferring with pre-trained weights. In computer vision,
pre-trained models on ImageNet have also been successfully
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Figure 1: Pipeline of the proposed DDT method for image
co-localization. In this instance, the goal is to localize the
airplane within each image. Note that, there might be few
noisy images in the image set. (Best viewed in color.)

adopted to various usages, e.g., as universal feature extrac-
tors [Wang et al., 2015; Li et al., 2016], object proposal gen-
erators [Ghodrati et al., 2015], etc. In particular, [Wei et al.,
2017] proposed the SCDA method to utilize pre-trained mod-
els for both localizing a single fine-grained object (e.g., birds
of different species) in each image and retrieving fine-grained
images of the same classes/species in an unsupervised fashion.

In this paper, we reveal that the convolutional activations can
be a detector for the common object in image co-localization.
Image co-localization is a fundamental computer vision prob-
lem, which simultaneously localizes objects of the same cate-
gory across a set of distinct images. Specifically, we propose
a simple but effective method named DDT (Deep Descriptor
Transforming) for image co-localization. In DDT, the deep
convolutional descriptors extracted from pre-trained models
are transformed into a new space, where it can evaluate the
correlations between these descriptors. By leveraging the cor-
relations among the image set, the common object inside these
images can be located automatically without additional super-
vision signals. The pipeline of DDT is shown in Fig. 1. To our
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best knowledge, this is the first work to demonstrate the pos-
sibility of convolutional activations/descriptors in pre-trained
models being able to act as a detector for the common object.

Experimental results show that DDT significantly outper-
forms existing state-of-the-art methods, including image co-
localization and weakly supervised object localization, in both
the deep learning and hand-crafted feature scenarios. Besides,
we empirically show that DDT has a good generalization abil-
ity for unseen images apart from ImageNet. More importantly,
the proposed method is robust, because DDT can also detect
the noisy images which do not contain the common object.

2 Related Work
2.1 CNN Model Reuse
Reusability has been emphasized by [Zhou, 2016] as a crucial
characteristic of the new concept of learnware. It would be
ideal if models can be reused in scenarios that are very differ-
ent from their original training scenarios. Particularly, with the
breakthrough in image classification using Convolutional Neu-
ral Networks (CNN), pre-trained CNN models trained for one
task (e.g., recognition) have also been applied to domains dif-
ferent from their original purposes (e.g., for describing texture
or finding object proposals [Ghodrati et al., 2015]). However,
for such adaptations of pre-trained models, they still require
further annotations in the new domain (e.g., image labels).
While, DDT deals with the image co-localization problem in
an unsupervised setting.

Coincidentally, several recent works also shed lights on
CNN pre-trained model reuse in the unsupervised setting, e.g.,
SCDA [Wei et al., 2017]. SCDA is proposed for handling
the fine-grained image retrieval task, where it uses pre-trained
models (from ImageNet, which is not fine-grained) to locate
main objects in fine-grained images. It is the most related work
to ours, even though SCDA is not for image co-localization.
Different from our DDT, SCDA assumes only an object of
interest in each image, and meanwhile objects from other
categories does not exist. Thus, SCDA locates the object using
cues from this single image assumption. Apparently, it can not
work well for images containing diverse objects (cf. Table 2
and Table 3), and also can not handle data noise (cf. Sec. 4.5).

2.2 Image Co-Localization
Image co-localization is a fundamental problem in computer
vision, where it needs to discover the common object emerging
in only positive sets of example images (without any nega-
tive examples or further supervisions). Image co-localization
shares some similarities with image co-segmentation [Zhao
and Fu, 2015; Kim et al., 2011; Joulin et al., 2012]. Instead
of generating a precise segmentation of the related objects in
each image, co-localization methods aim to return a bound-
ing box around the object. Moreover, co-segmentation has
a strong assumption that every image contains the object of
interest, and hence is unable to handle noisy images.

Additionally, co-localization is also related to weakly su-
pervised object localization (WSOL) [Zhang et al., 2016;
Bilen et al., 2015; Wang et al., 2014; Siva and Xiang, 2011].
But the key difference between them is WSOL requires
manually-labeled negative images whereas co-localization

does not. Thus, WSOL methods could achieve better local-
ization performance than co-localization methods. However,
our DDT performs comparably with state-of-the-art WSOL
methods and even outperforms them (cf. Table 4).

Recently, there are also several co-localization methods
based on pre-trained models, e.g., [Li et al., 2016; Wang et
al., 2014]. But, these methods just treated pre-trained models
as simple feature extractors to extract the fully connected rep-
resentations, which did not leverage the original correlations
between deep descriptors among convolutional layers. More-
over, these methods also needed object proposals as a part
of their object discovery, which made them highly dependent
on the quality of object proposals. In addition, almost all the
previous co-localization methods can not handle noisy data,
except for [Tang et al., 2014].

Comparing with previous works, our DDT is unsupervised,
without utilizing bounding boxes, additional image labels or
redundant object proposals. Images only need one forward run
through a pre-trained model. Then, efficient deep descriptor
transforming is employed for obtaining the category-consistent
image regions. DDT is very easy to implement, and surpris-
ingly has good generalization ability and robustness.

3 The Proposed Method
3.1 Preliminary
The following notations are used in the rest of this paper. The
term “feature map” indicates the convolution results of one
channel; the term “activations” indicates feature maps of all
channels in a convolution layer; and the term “descriptor”
indicates the d-dimensional component vector of activations.

Given an input image I of size H ×W , the activations of a
convolution layer are formulated as an order-3 tensor T with
h×w×d elements. T can be considered as having h×w cells
and each cell contains one d-dimensional deep descriptor. For
the n-th image, we denote its corresponding deep descriptors
as Xn =

{
xn
(i,j) ∈ R

d
}

, where (i, j) is a particular cell
(i ∈ {1, . . . , h} , j ∈ {1, . . . , w}) and n ∈ {1, . . . , N}.

3.2 SCDA Recap
Since SCDA [Wei et al., 2017] is the most related work to ours,
we hereby present a recap of this method. SCDA is proposed
for dealing with the fine-grained image retrieval problem. It
employs pre-trained models to select the meaningful deep de-
scriptors by localizing the main object in fine-grained images
unsupervisedly. In SCDA, it assumes that each image contains
only one main object of interest and without other categories’
objects. Thus, the object localization strategy is based on the
activation tensor of a single image.

Concretely, for an image, the activation tensor is added up
through the depth direction. Thus, the h× w × d 3-D tensor
becomes a h×w 2-D matrix, which is called the “aggregation
map” in SCDA. Then, the mean value ā of the aggregation
map is regarded as the threshold for localizing the object. If
the activation response in the position (i, j) of the aggregation
map is larger than ā, it indicates the object might appear in
that position.
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3.3 Deep Descriptor Transforming (DDT)
What distinguishes DDT from SCDA is that we can leverage
the correlations beneath the whole image set, instead of a
single image. Additionally, different from weakly supervised
object localization, we do not have either image labels or
negative image sets in WSOL, so that the information we can
use is only from the pre-trained models. Here, we transform
the deep descriptors in convolutional layers to mine the hidden
information for co-localizing common objects.

Principal component analysis (PCA) [Pearson, 1901] is a
statistical procedure, which uses an orthogonal transformation
to convert a set of observations of possibly correlated variables
into a set of linearly uncorrelated variables (i.e., the principal
components). This transformation is defined in such a way
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to
all the preceding components.

PCA is widely used in machine learning and computer
vision for dimension reduction [Chen et al., 2013; Gu et
al., 2011; Zhang et al., 2009; Davidson, 2009], noise reduc-
tion [Zhang et al., 2013; Nie et al., 2011] and so on. Specifi-
cally, in this paper, we utilize PCA as projection directions for
transforming these deep descriptors {x(i,j)} to evaluate their
correlations. Then, on each projection direction, the corre-
sponding principal component’s values are treated as the cues
for image co-localization, especially the first principal com-
ponent. Thanks to the property of this kind of transforming,
DDT is also able to handle data noise.

In DDT, for a set of N images containing objects from the
same category, we first collect the corresponding convolutional
descriptors (X1, . . . , XN ) by feeding them into a pre-trained
CNN model. Then, the mean vector of all the descriptors is
calculated by:

x̄ =
1

K

∑
n

∑
i,j

xn
(i,j) , (1)

where K = h × w × N . Note that, here we assume each
image has the same number of deep descriptors (i.e., h× w)
for presentation clarity. Our proposed method, however, can
handle input images with arbitrary resolutions.

Then, after obtaining the covariance matrix:

Cov(x) =
1

K

∑
n

∑
i,j

(xn
(i,j) − x̄)(xn

(i,j) − x̄)> , (2)

we can get the eigenvectors ξ1, . . . , ξd of Cov(x) which cor-
respond to the sorted eigenvalues λ1 ≥ · · · ≥ λd ≥ 0.

As aforementioned, since the first principal component has
the largest variance, we take the eigenvector ξ1 corresponding
to the largest eigenvalue as the main projection direction. For
the deep descriptor at a particular position (i, j) of an image,
its first principal component p1 is calculated as follows:

p1(i,j) = ξ>1
(
x(i,j) − x̄

)
. (3)

According to their spatial locations, all p1(i,j) from an image
are combined into a 2-D matrix whose dimensions are h× w.

We call that matrix as indicator matrix:

P 1 =


p1(1,1) p1(1,2) . . . p1(1,w)

p1(2,1) p1(2,2) . . . p1(2,w)

...
...

. . .
...

p1(h,1) p1(h,2) . . . p1(h,w)

 . (4)

P 1 contains positive (negative) values which can reflect the
positive (negative) correlations of these deep descriptors. The
larger the absolute value is, the higher the positive (negative)
correlation will be. Because ξ1 is obtained through all N
images, the positive correlation could indicate the common
characteristic throughN images. Specifically, in the image co-
localization scenario, the corresponding positive correlation
indicates indeed the common object inside these images.

Therefore, the value zero could be used as a natural thresh-
old for dividing P 1 of one image into two parts: one part has
positive values indicating the common object, and the other
part has negative values presenting background objects rarely
appear. In addition, if P 1 of an image has no positive value, it
indicates that no common object exists in that image, which
can be used for detecting noisy images. In practice, P 1 is
resized by the nearest interpolation, such that its size is the
same as that of the input image. Meanwhile, we collect the
largest connected component of the positive regions of P 1 (as
what is done in [Wei et al., 2017]). Based on these positive cor-
relation values and the zero threshold, the minimum rectangle
bounding box which contains the largest connected component
of positive regions is returned as our object co-localization
prediction.

3.4 Discussions and Analyses
In this section, we investigate the effectiveness of DDT by
comparing with SCDA.

As shown in Fig. 2, the object localization regions of SCDA
and DDT are highlighted in red. Because SCDA only consid-
ers the information from a single image, in Fig. 2 (a), “bike”,
“person” and even “guide-board” are all detected as main ob-
jects. Furthermore, we normalize the values (all positive) of
the aggregation map of SCDA into the scale of [0, 1], and
calculate the mean value (which is taken as the object local-
ization threshold in SCDA). The histogram of the normalized
values in aggregation map is also shown in that figure. The
red vertical line corresponds to the threshold. We can find that,
beyond the threshold, there are still many values. It gives an
explanation about why SCDA highlights more regions.

Whilst, for DDT, it leverages the whole image set to trans-
form these deep descriptors into P 1. Thus, for the bicycle
class, DDT can accurately locate the “bicycle” object. The
histogram is also drawn. But, P 1 has both positive and nega-
tive values. We normalize P 1 into the [−1, 1] scale this time.
Apparently, few values are larger than the DDT threshold
(i.e., 0). More importantly, many values are close to −1 which
indicates the strong negative correlation. This observation
validates the effectiveness of DDT in image co-localization.
As another example shown in Fig. 2 (b), SCDA even wrongly
locates “person” in the image belonging to the diningtable
class. While, DDT can correctly and accurately locate the
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Figure 2: Examples from twelve randomly sampled classes of VOC 2007. The first column of each subfigure are produced by
SCDA, the second column are by our DDT. The red vertical lines in the histogram plots indicate the corresponding thresholds for
localizing objects. The selected regions in images are highlighted in red. (Best viewed in color and zoomed in.)

“diningtable” image region. In Fig. 2, more examples are pre-
sented. In that figure, some failure cases can be also found,
e.g., the chair class in Fig. 2 (g).

In addition, the normalized P 1 can be also used as localiza-
tion probability scores. Combining it with conditional random
filed techniques might produce more accurate object bound-
aries. Thus, DDT can be modified slightly in that way, and
then perform the co-segmentation problem. More importantly,
different from other co-segmentation methods, DDT can detect
noisy images while other methods can not.

4 Experiments
In this section, we first introduce the evaluation metric and
datasets used in image co-localization. Then, we compare the
empirical results of our DDT with other state-of-the-arts on
these datasets. The computational cost of DDT is reported too.
Moreover, the results in Sec. 4.4 and Sec. 4.5 illustrate the
generalization ability and robustness of the proposed method.
Finally, our further study in Sec. 4.6 reveals DDT might deal
with part-based image co-localization, which is a novel and
challenging problem.

In our experiments, the images keep the original image reso-
lutions. For the pre-trained deep model, the publicly available
VGG-19 model [Simonyan and Zisserman, 2015] is employed
to extract deep convolution descriptors from the last convo-
lution layer (before pool5). We use the open-source library
MatConvNet [Vedaldi and Lenc, 2015] for conducting experi-
ments. All the experiments are run on a computer with Intel
Xeon E5-2660 v3, 500G main memory, and a K80 GPU.

4.1 Evaluation Metric and Datasets
Following previous image co-localization works [Li et al.,
2016; Cho et al., 2015; Tang et al., 2014], we take the cor-
rect localization (CorLoc) metric for evaluating the proposed
method. CorLoc is defined as the percentage of images cor-
rectly localized according to the PASCAL-criterion [Ever-
ingham et al., 2015]: area(Bp∩Bgt)

area(Bp∪Bgt)
> 0.5, where Bp is the

Table 1: Comparisons of CorLoc on Object Discovery.
Methods Airplane Car Horse Mean

[Joulin et al., 2010] 32.93 66.29 54.84 51.35
[Joulin et al., 2012] 57.32 64.04 52.69 58.02

[Rubinstein et al., 2013] 74.39 87.64 63.44 75.16
[Tang et al., 2014] 71.95 93.26 64.52 76.58

SCDA 87.80 86.52 75.37 83.20
[Cho et al., 2015] 82.93 94.38 75.27 84.19

Our DDT 91.46 95.51 77.42 88.13

predicted bounding box and Bgt is the ground-truth bounding
box. All CorLoc results are reported in percentages.

Our experiments are conducted on four challenging datasets
commonly used in image co-localization, i.e., the Object Dis-
covery dataset [Rubinstein et al., 2013], the PASCAL VOC
2007 / VOC 2012 dataset [Everingham et al., 2015] and the
ImageNet Subsets [Li et al., 2016].

For experiments on the VOC datasets, we follow [Cho et
al., 2015; Li et al., 2016; Joulin et al., 2014] to use all images
in the trainval set (excluding images that only contain object
instances annotated as difficult or truncated). For Object Dis-
covery, we use the 100-image subset following [Rubinstein et
al., 2013; Cho et al., 2015] in order to make an appropriate
comparison with other methods.

In addition, Object Discovery has 18%, 11% and 7% noisy
images in the Airplane, Car and Horse categories, respectively.
These noisy images contain no object belonging to their cat-
egory, as the third image shown in Fig. 1. Particularly, in
Sec. 4.5, we quantitatively measure the ability of our proposed
DDT to identify these noisy images.

To further investigate the generalization ability of DDT,
ImageNet Subsets [Li et al., 2016] are used, which contain
six subsets/categories. These subsets are held-out categories
from the 1000-label ILSVRC classification [Russakovsky et
al., 2015]. That is to say, these subsets are “unseen” by pre-
trained CNN models. Experimental results in Sec. 4.4 show
that DDT is insensitive to the object category.



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3052

Table 2: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2007.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

[Joulin et al., 2014] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
SCDA 54.4 27.2 43.4 13.5 2.8 39.3 44.5 48.0 6.2 32.0 16.3 49.8 51.5 49.7 7.7 6.1 22.1 22.6 46.4 6.1 29.5

[Cho et al., 2015] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
[Li et al., 2016] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

Table 3: Comparisons of the CorLoc metric with state-of-the-art co-localization methods on VOC 2012.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean
SCDA 60.8 41.7 38.6 21.8 7.4 67.6 38.8 57.4 16.0 34.0 23.9 53.8 47.3 54.8 7.9 9.9 25.3 23.2 50.2 10.1 34.5

[Cho et al., 2015] 57.0 41.2 36.0 26.9 5.0 81.1 54.6 50.9 18.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.3 64.6 39.2 41.8
[Li et al., 2016] 65.7 57.8 47.9 28.9 6.0 74.9 48.4 48.4 14.6 54.4 23.9 50.2 69.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8

Our DDT 76.7 67.1 57.9 30.5 13.0 81.9 48.3 75.7 18.4 48.8 27.5 71.8 66.8 73.7 6.1 18.5 38.0 54.7 78.6 34.6 49.4

4.2 Comparisons with State-of-the-Arts
Comparisons to Image Co-Localization Methods
We first compare the results of DDT to state-of-the-arts (in-
cluding SCDA) on Object Discovery in Table 1. For SCDA,
we also use VGG-19 to extract the convolution descriptors and
perform experiments. As shown in that table, DDT outper-
forms other methods by about 4% in the mean CorLoc metric.
Especially for the airplane class, it is about 10% higher than
that of [Cho et al., 2015]. In addition, note that the images
of each category in this dataset contain only one object, thus,
SCDA can perform well.

For VOC 2007 and 2012, these datasets contain diverse
objects per image, which is more challenging than Object
Discovery. The comparisons of the CorLoc metric on these
two datasets are reported in Table 2 and Table 3, respectively.
It is clear that on average our DDT outperforms the previous
state-of-the-arts (based on deep learning) by a large margin on
both two datasets. Moreover, DDT works well on localizing
small common objects, e.g., “bottle” and “chair”. In addition,
because most images of these datasets have multiple objects,
which do not obey SCDA’s assumption, SCDA performs badly
in the complicated environment. For fair comparisons, we also
use VGG-19 to extract the fully connected representations of
the object proposals in [Li et al., 2016], and then perform
the remaining processes of their method (the source codes
are provided by the authors). As aforementioned, due to the
high dependence on the quality of object proposals, their mean
CorLoc metric of VGG-19 is 41.9% and 45.6% on VOC 2007
and 2012, respectively. The improvements are limited, and the
performance is still significantly worse than ours.

Comparisons to Weakly Supervised Localization
Methods
To further verify the effectiveness of DDT, we also compare
it with some state-of-the-art methods for weakly supervised
object localization. Table 4 illustrates these empirical results
on VOC 2007. Particularly, DDT achieves 46.9% on average
which is higher than most WSOL methods in the literature.
But, it still has a small gap (0.8% lower) with that of [Wang
et al., 2014] which is also a deep learning based approach.
This is understandable as we do not use any negative data
for co-localization. Meanwhile, our DDT can easily extend
to handle negative data and thus perform WSOL. Moreover,
DDT could handle noisy data (cf. Sec. 4.5). But, existing
WSOL methods are not designed to deal with noise.

4.3 Computational Costs of DDT
Here, we take the total 171 images in the aeroplane category
of VOC 2007 as examples to report the computational costs.
The average image resolution of the 171 images is 350× 498.
The computational time of DDT has two main components:
one is for feature extraction, the other is for deep descriptor
transforming. Because we just need the first principal compo-
nent, the transforming time on all the 120,941 descriptors of
512-d is only 5.7 seconds. The average descriptor extraction
time is 0.18 second/image on GPU and 0.86 second/image on
CPU, respectively. That shows the efficiency of the proposed
DDT method in real-world applications.

4.4 Unseen Classes Apart from ImageNet
In order to justify the generalization ability of DDT, we also
conduct experiments on some images (of six subsets) disjoint
with the images from ImageNet. Note that, the six categories
of these images are unseen by pre-trained models. The six
subsets were provided in [Li et al., 2016]. Table 5 presents the
CorLoc metric on these subsets. Our DDT (69.1% on average)
still significantly outperforms other methods on all categories,
especially for some difficult objects categories, e.g., rake and
wheelchair. In addition, the mean CorLoc metric of [Li et al.,
2016] based on VGG-19 is 51.6% on this dataset.

Furthermore, in Fig. 3, several successful predictions by
DDT and also some failure cases on this dataset are provided.
In particular, for “rake” (“wheelchair”), even though a large
portion of images in these two categories contain both people
and rakes (wheelchairs), our DDT could still accurately locate
the common object in all the images, i.e., rakes (wheelchairs),
and ignore people. This observation validates the effectiveness
(especially for the high CorLoc metric on rake and wheelchair)
of our method from the qualitative perspective.

4.5 Detecting Noisy Images
In this section, we quantitatively present the ability of DDT
to identify noisy images. As aforementioned, in Object Dis-
covery, there are 18%, 11% and 7% noisy images in the cor-
responding categories. In our DDT, the number of positive
values in P 1 can be interpreted as a detection score. The lower
the number is, the higher the probability of noisy images will
be. In particular, no positive value at all in P 1 presents the
image as definitely a noisy image. For each category in that
dataset, the ROC curve is shown in Fig. 4, which measures how
the methods correctly detect noisy images. In the literature,
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Table 4: Comparisons of the CorLoc metric with weakly supervised object localization methods on VOC 2007. Note that, the
“X” in the “Neg.” column indicates that these WSOL methods require access to a negative image set, whereas our DDT does not.

Methods Neg. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean
[Shi et al., 2013] X 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2

[Cinbis et al., 2015] X 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
[Wang et al., 2015] X 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] X 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] X 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[Wang et al., 2014] X 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7
Our DDT 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

(a) Chipmunk (b) Rhino (c) Stoat

(d) Racoon (e) Rake (f) Wheelchair
Figure 3: Random samples of predicted object co-localization bounding box on ImageNet Subsets. Each subfigure contains three
successful predictions and one failure case. In these images, the red rectangle is the prediction by DDT, and the yellow dashed
rectangle is the ground truth bounding box. In the successful predictions, the yellow rectangles are omitted since they are exactly
the same as the red predictions. (Best viewed in color and zoomed in.)

Table 5: Comparisons of on image sets disjoint with ImageNet.
Methods Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

[Cho et al., 2015] 26.6 81.8 44.2 30.1 8.3 35.3 37.7
SCDA 32.3 71.6 52.9 34.0 7.6 28.3 37.8

[Li et al., 2016] 44.9 81.8 67.3 41.8 14.5 39.3 48.3
Our DDT 70.3 93.2 80.8 71.8 30.3 68.2 69.1
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Figure 4: ROC curves illustrating the effectiveness of our DDT
at identifying noisy images on the Object Discovery dataset.
The curves in red line are the ROC curves of DDT. The curves
in blue dashed line present the method in [Tang et al., 2014].

only the method in [Tang et al., 2014] (i.e., the Image-Box
model in that paper) could solve image co-localization with
noisy data. From these figures, it is apparent to see that, in
image co-localization, our DDT has significantly better perfor-
mance in detecting noisy images than Image-Box (whose
noisy detection results are obtained by re-running the publicly
available code released by the authors). Meanwhile, our mean
CorLoc metric without noise is about 12% higher than theirs
on Object Discovery, cf. Table 1.

4.6 Further Study
In the above, DDT only utilizes the information of the first
principal components, i.e., P 1. How about others, e.g., the
second principal components P 2? In Fig. 5, we show four
images containing dogs and the visualization of their P 1 and
P 2. Through these figures, it is apparently to find P 1 can
locate the whole common object. However, P 2 interestingly
separates the head region from the torso region. Meanwhile,

Image

P1

P2

Figure 5: Four images belonging to the dog category of VOC
2007 with visualization of their indicator matrices P 1 and P 2.
In visualization figures, warm colors indicate positive values,
and cool colors present negative. (Best viewed in color.)

these two meaningful regions can be easily distinguished from
the background. These observations inspire us to use DDT for
the more challenging part-based image co-localization task in
the future, which is never touched before.

5 Conclusions
Pre-trained models are widely used in diverse applications
in machine learning and computer vision. However, the trea-
sures beneath pre-trained models are not exploited sufficiently.
In this paper, we proposed Deep Descriptor Transforming
(DDT) for image co-localization. DDT indeed revealed an-
other reusability of deep pre-trained networks, i.e., convolu-
tional activations/descriptors can play a role as a common
object detector. It offered further understanding and insights
about CNNs. Besides, our proposed DDT method is easy to
implement, and it achieved great image co-localization perfor-
mance. Moreover, the generalization ability and robustness
of DDT ensure its effectiveness and powerful reusability in
real-world applications.

DDT also has the potential ability in the applications of
video-based unsupervised object discovery. In addition, robust
PCA is promising to be used in DDT for improving the Cor-
Loc metric. Furthermore, interesting observations in Sec. 4.6
make the more challenging but intriguing part-based image
co-localization problem be a future work.
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