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ABSTRACT

Multi-label image recognition is a fundamental but challeng-
ing computer vision task. Great progress has been achieved
by exploring the label correlation among these multiple labels
which is the most crucial issue for multi-label recognition.
In this paper, we propose a unified deep learning framework
to jointly disentangle class-specific maps corresponding to
discriminative category-wise information and then evaluate
the label co-occurrence of these maps. Specifically, after ob-
taining the general deep image features and conducting multi-
label classification, we employ the classification weights to
reform the feature maps into class-aware disentangled maps
(CADMs). Then, based on CADMs, we first transfer them
into label vectors and then formulate the label correlation de-
pendency from an embedding perspective. The whole model
is driven by both the classification loss and the label correla-
tion embedding loss, which is end-to-end trainable with only
image-level supervisions. Extensive quantitative results of
two benchmark multi-label image datasets show our model
consistently outperforms other competing methods by a large
margin. Meanwhile, qualitative analyses also demonstrate our
model can effectively capture relatively pure class-aware maps
and model label correlation dependency as well.

Index Terms— Multi-label image recognition, label cor-
relation, CNNs, class-aware disentangled maps (CADMs).

1. INTRODUCTION

Recognizing multiple labels of image is an important and prac-
tical problem in the computer vision and multimedia field, as
real-world images always contain rich and diverse semantic
information. Multi-label image recognition is general and
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has various applications, such as scene recognition [1], hu-
man attribute recognition [2], face alignment [3], retail check-
out recognition [4], etc. An important but challenging issue
for multi-label recognition is to identify and recover the co-
occurrence of multiple labels, such that satisfactory prediction
accuracy can be expected.

A simple and straightforward method for multi-label recog-
nition is to train one binary deep classifier for each label. How-
ever, the major challenge of learning from multi-label data lies
in the potentially tremendous-sized output space. To deal with
the challenge of such a huge output space, a common prac-
tice is to explore the label correlation to facilitate the learning
process [5, 6, 7]. In the literature, Gong et al. [8] evaluated
various loss functions and found that weighted approximate
ranking loss worked best with deep CNNs. Additionally, Hu et
al. [9] proposed to employ structured inference neural network
to model the label correlation of multiple labels. Li et al. [10]
leveraged probabilistic graphical models to capture the label
correlation dependency.

Recently, researchers attempted to apply attention mecha-
nisms to discover the label correlation among different atten-
tional regions, e.g., [11, 12]. In [12], the authors developed
the spatial regularization net to focus on the objectiveness re-
gions, and further learned label correlation of these regions
by self-attention. While, Wang et al. [11] proposed the spatial
transformer to first capture the objectiveness regions and then
use LSTMs to handle the label correlation. Despite the good
improvements obtained, existing methods still have limitations
on identifying and recovering the co-occurrence of multiple
labels, more concretely: 1) disentangling class-specific image
regions and 2) further evaluating their corresponding label
co-occurrence jointly. If these two processes can be performed
well, it will significantly boost multi-label recognition perfor-
mance.

In this paper, we propose a unified multi-label image recog-
nition framework, which consists of two crucial modules aim-
ing at the two aforementioned processes. The architecture of
our model is illustrated in Fig. 1. After obtaining the general
and holistic image feature, the first module can disentangle the
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Multi-instance learning (MIL) has been widely applied to di-
verse applications involving complicated data objects such as
proteins and images. However, few MIL algorithms could deal
with the problems in an open and dynamic environment, where
new categories of samples emerge. In this paper, we focus on
the Multi-instance learning with Augmented Class (MAC)
problem, and formulate MAC from a metric learning perspec-
tive. We extract key instances to form the super-bag for each
observed class, and non-key instances from all the observed
classes to form a meta super-bag. Based on these super-bags,
we propose the MAC-metric method to learn discriminative
metrics for classifying bags from the observed classes and rec-
ognizing bags from the augmented class. Experimental results
of diverse domains show MAC-metric outperforms other base-
line methods significantly when the augmented class emerges.
Meanwhile, MAC-metric is comparable with state-of-the-art
MIL algorithms for traditional binary MIL classification.

Introduction
Related work

In this section, we will review the related work about incre-
mental learning and multi-instance learning.

Proposed method
We propose a unified framework by jointly disentangling
class-aware image regions and embedding label correlation
information to deal with multi-label image recognition. The
whole framework of our model is illustrated in Fig. 1. Our
model is composed of two crucial modules, i.e., the class-
aware region disentangling module and the label correlation
embedding module. In this section, we first introduce the
notations, then give an overview of our proposed model, and
finally present these two key modules in details.

Preliminary
Let I denote an input image with ground-truth labels y =⇥
y1, y2, . . . , yC

⇤>
, where yc is a binary indicator. yc = 1

denotes image I is tagged with label c and yc = 0 otherwise.
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C is the number of all possible labels in the dataset. For multi-
label image recognition, the goal is to predict the multi-label
vector ŷ for a test input Î.

Model overview
As shown in Fig. 1, for an input multi-label image, traditional
convolutional neural networks is employed to learn a holistic
image representation. The obtained deep image representa-
tions will be processed by the following modules. Concretely,
the activations of a convolution layer can be formulated as an
order-3 tensor X with d ⇥ h ⇥ w elements, which includes a
set of 2-D feature maps. These feature maps are embedded
with rich spatial information, and are also known to obtain
mid- and high-level information (Liu, Shen, and van den
Hengel 2016). In experiments, following (?), we use ResNet-
101 (He et al. 2016) as our base model. Thus, if an image
with the 448 ⇥ 448 resolution is the input, we can obtain
2048 14 ⇥ 14 feature maps from the “conv5 x” layer by

X = fcnn(I; ✓cnn) 2 Rd⇥h⇥w , (1)

where X is the aforementioned feature maps, and ✓cnn in-
dicates the parameters of CNNs. Specifically, here h = 14,
w = 14, and d = 2048.

After that, for measuring the final prediction errors, we
combine two predicted label confidences as bi-stream aggre-
gation. As illustrated in Fig. 1, for the label confidences of the
first stream, we employ global max-pooling on X to obtain
the image-level features, following with binary classification
for each of the C labels:

ŷfcls = ffcls(X; ✓fcls) 2 RC , (2)

where ŷfcls =
⇥
ŷ1
fcls, ŷ

2
fcls, . . . , ŷ

C
fcls

⇤>
, and each element of

ŷfcls is a binary indicator. For the second stream, we obtain
its label confidences ŷscls via directly depth-wise global max-
pooling on the class-aware region disentangling maps. These
class-aware maps contain not only the local-level spatial
region information but also the global-level class-specific
semantic information.

Consequently, we aggregate these two label confidences
as the final label prediction confidences:

ŷ =
1

2
(ŷfcls + ŷscls) 2 RC . (3)
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ŷ =
1

2
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ŷ1
fcls, ŷ
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model is composed of two crucial modules, i.e., the class-
aware region disentangling module and the label correlation
embedding module. In this section, we first introduce the
notations, then give an overview of our proposed model, and
finally present these two key modules in details.

Preliminary
Let I denote an input image with ground-truth labels y =⇥
y1, y2, . . . , yC

⇤>
, where yc is a binary indicator. yc = 1

denotes image I is tagged with label c and yc = 0 otherwise.

Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

C is the number of all possible labels in the dataset. For multi-
label image recognition, the goal is to predict the multi-label
vector ŷ for a test input Î.

Model overview
As shown in Fig. 1, for an input multi-label image, traditional
convolutional neural networks is employed to learn a holistic
image representation. The obtained deep image representa-
tions will be processed by the following modules. Concretely,
the activations of a convolution layer can be formulated as an
order-3 tensor X with d ⇥ h ⇥ w elements, which includes a
set of 2-D feature maps. These feature maps are embedded
with rich spatial information, and are also known to obtain
mid- and high-level information (Liu, Shen, and van den
Hengel 2016). In experiments, following (?), we use ResNet-
101 (He et al. 2016) as our base model. Thus, if an image
with the 448 ⇥ 448 resolution is the input, we can obtain
2048 14 ⇥ 14 feature maps from the “conv5 x” layer by

X = fcnn(I; ✓cnn) 2 Rd⇥h⇥w , (1)

where X is the aforementioned feature maps, and ✓cnn in-
dicates the parameters of CNNs. Specifically, here h = 14,
w = 14, and d = 2048.

After that, for measuring the final prediction errors, we
combine two predicted label confidences as bi-stream aggre-
gation. As illustrated in Fig. 1, for the label confidences of the
first stream, we employ global max-pooling on X to obtain
the image-level features, following with binary classification
for each of the C labels:

ŷfcls = ffcls(X; ✓fcls) 2 RC , (2)

where ŷfcls =
⇥
ŷ1
fcls, ŷ

2
fcls, . . . , ŷ

C
fcls

⇤>
, and each element of

ŷfcls is a binary indicator. For the second stream, we obtain
its label confidences ŷscls via directly depth-wise global max-
pooling on the class-aware region disentangling maps. These
class-aware maps contain not only the local-level spatial
region information but also the global-level class-specific
semantic information.

Consequently, we aggregate these two label confidences
as the final label prediction confidences:

ŷ =
1

2
(ŷfcls + ŷscls) 2 RC . (3)

1st stream

2rd stream

CADMs

Fig. 1. Overall framework of our proposed model for multi-label image recognition. The input image is firstly fed to conventional
CNNs for learning the image representations (i.e., X) of the final convolutional layer. After that, we utilize global max-pooling to
obtain the image-level features, and then conduct multi-label classification (i.e., ffcls) based on these features. In the following,
we employ the classification weights (i.e., θfcls) on X for generating the class-aware disentangled maps (CADMs), which could
disentangle class-specific image regions/maps corresponding to these multiple image labels. Based on CADMs, label correlation
information is embedded in the label vector space. It is the key and could be benefit to multi-label image recognition.

class-aware maps from global image-level representation in a
simple but effective way, i.e., using the classification weights
to reform the feature maps into class-aware disentangled maps.
Each map of the so called class-aware disentangled maps cor-
responds to one specific class/label meaning of the multiple
labels. It can relatively purely reflect the semantic informa-
tion of its specific label and meanwhile associate with spatial
contexts (cf. Fig. 2). Particularly, the number of class-aware
disentangled maps (CADMs) is equal to the number of labels.
The second module of our model is based on the obtained
CADMs, which is designed for modeling the multiple label co-
occurrence in a more explicit way, as shown in Fig. 3. We first
transform the CADMs into a label vector. In the label vector
space, for multi-label recognition, it assumes that the relevant
labels (label vectors) should be closed to each other and form a
dummy cluster. While, the irrelevant/negative labels should be
apart from the “positive” dummy cluster. Please note that the
discriminative ability of CADMs will not be destroyed since
the embedding operation is performed in the label vector space.
Then, we formulate it as the label correlation embedding loss
function. Driven by both traditional multi-label recognition
loss and our label correlation embedding loss, our model can
be trained in an end-to-end fashion with only image-level su-
pervisions, which does not require any additional annotations.
In a nutshell, our method explores the spatial correlation of
labels and utilizes it as an additional cue for classification. Par-
ticularly, the label correlation embedding layers can essentially
learn the correlation among class-aware disentangled maps
(e.g., the activations of “snowboard” will be boosted if there
is a “person” on top of it).

The main contributions of this paper are three-fold: (1) We
propose a unified multi-label image recognition framework for

jointly identifying and recovering the label co-occurrence of
multiple labels. The proposed model is end-to-end trainable
with only image-level supervisions. (2) We devise two func-
tional modules of the proposed model, i.e., the class-aware
map disentangling and label correlation embedding modules,
for capturing the class-specific information with spatial con-
texts and modeling the label co-occurrence, respectively. (3)
We conduct comprehensive experiments on two popular multi-
label image recognition datasets, and our proposed model
consistently achieves superior performance over competing
state-of-the-arts methods on these datasets.

2. PROPOSED METHOD

2.1. Preliminary

Let I denote an input image with ground-truth labels y =[
y1, y2, . . . , yC

]>
, where yc is a binary indicator and C is the

number of all possible labels in the dataset. yc = 1 presents
image I is tagged with label c and yc = 0 otherwise. For multi-
label image recognition, the goal is to predict the multi-label
vector ŷ for a test input Î.

2.2. Model overview

As shown in Fig. 1, for an input multi-label image, traditional
convolutional neural networks are employed to learn a holistic
image representation. The obtained deep image representa-
tions will be processed by the following modules. Concretely,
the activations of a convolution layer can be formulated as an
order-3 tensor X with d× h× w elements, which includes a
set of 2-D feature maps. These feature maps are embedded
with rich spatial information, and are also known to obtain



mid- and high-level information [13]. In experiments, follow-
ing [12, 14], we use ResNet-101 [15] as our base model. Thus,
if an image with the 448 × 448 resolution is the input, we
can obtain 2048× 14× 14 feature maps from the “conv5 x”
layer by

X = fcnn(I; θcnn) ∈ Rd×h×w , (1)

where X is the aforementioned feature maps, and θcnn indi-
cates the parameters of CNNs. Specifically, here h = 14,
w = 14, and d = 2048.

After that, for measuring the final prediction errors, we
combine two predicted label confidences as the bi-stream ag-
gregation. As illustrated in Fig. 1, for the label confidences of
the first stream, we employ global max-pooling on X to obtain
the image-level features, following with binary classification
for each of the C labels:

ŷfcls = ffcls(X; θfcls) ∈ RC , (2)

where ŷfcls =
[
ŷ1

fcls, ŷ
2
fcls, . . . , ŷ

C
fcls

]>
, and each element of

ŷfcls is a confidence score. For the second stream, we ob-
tain its label confidences ŷscls via directly depth-wise global
max-pooling on the class-aware disentangled maps (CADMs).
These class-aware maps not only contain the local-level spa-
tial contexts information (i.e., activations), but also have the
global-level class-specific semantic meaning. The detailed
CADMs generation processing will be described in the next
sub-section.

In the following, we aggregate these two label confidences
as the final label prediction confidences by

ŷ =
1

2
(ŷfcls + ŷscls) ∈ RC . (3)

Finally, ŷ will be used to measure the prediction errors w.r.t.
the ground-truth labels y as

Lcls =

C∑

c=1

yc log(σ(ŷc)) + (1− yc) log(1− σ(ŷc)), (4)

where σ(·) is the sigmoid function.
In addition, beyond Lcls, our model is also driven by an-

other loss function, i.e., Llce, for explicitly modeling the label
co-occurrence cues (which will be elaborated in the following
sub-section). Our final loss function is presented as follows:

L = Lcls + λ · Llce . (5)

Here, λ is a trade-off parameter, which is set to 0.5 in all the
experiments.

2.3. Class-aware map disentangling

In this section, we elaborate our class-aware map disentangling
module. This proposed module is designed to disentangle the
class-specific maps from the deep representations. The disen-
tangled maps could benefit to evaluate the label correlation

Person Snowboard Bench Backpack Skateboard Stop Sign

Person Umbrella Train Tie Car Bicycle

Person Kite Tennis Racket Stop Sign Bench Car

Fig. 2. Exampled images from the MS-COCO dataset with
the CADMs. For each image, we first sort the summation
activation values of every CADM in the descending order, and
then present the class-aware maps in the same order. It is clear
that positive labels correspond to strong activations in their
own CADM, while negative labels almost activate nothing by
comparison. (Best viewed in color.)

and embed the label correlation information into the whole
multi-label learning system.

As aforementioned, based on X, we globally max-pool
the image representations into an image-level feature and then
conduct one fully-connected layer θfcls ∈ Rd×C for classifi-
cation. Inspired by [16], we can use θfcls to disentangle C
class-specific maps from these distributed representations of
X [17, 18]. However, different from the global average-pooling
used in [16], here we employ global max-pooling for keep-
ing the highlighted activations of small-scale objects which is
usually emerged in multi-label images.

Concretely, for a given image, ŷfcls is the predicted label
confidence via ffcls(X; θfcls). θcfcls denotes the classification
weights w.r.t. the c-th label. From another perspective, θcfcls

can be treated as the filter to filter out class-specific discrimi-
native information for the c-th label from X. Here we omit the
bias term since it has little to no impact on the classification
performance.

We denote Ac as the corresponding class-aware disentan-
gled map for class c, which can be obtained by

Ac = θcfcls
> · X ∈ Rh×w . (6)

Each Ac is disentangled for its corresponding c-th label. Thus,
by collecting all C disentangled maps, we obtain

A = θfcls
> · X ∈ RC×h×w . (7)

In fact, the class-aware disentangled maps (CADMs) A is
simply a weighted linear sum of the presence of these visual
patterns at different spatial locations. In Fig. 2, several qualita-
tive results of CADMs for multi-label images are provided. As
shown in that figure, each CADM corresponds to one specific
and independent label meaning. Moreover, it is apparent to
see that the positive label has more strong activations in its
class-aware map, and the negative labels has much weaker
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Fig. 3. Illustration of our proposed label correlation embed-
ding for improving multi-label image recognition performance.

and even none activations. The observations verify that the
class-aware map disentangling approach can both decouple
label semantic information and localize class-specific regions
at the same time.

2.4. Label correlation embedding

After disentangling, the obtained class-aware maps contain
both the original image appearance cues and specific label
semantic information. In order to capture label correlation,
which is the most crucial thing for multi-label image recog-
nition, we propose to explicitly model it via label correlation
embedding in a metric learning fashion.

Metric learning is popular in face recognition [19], person
re-identification [20] and vehicle re-identification [21]. In
these previous metric learning work, they almost embedded
the objective images into feature vectors in the feature space.
However, different from them, our model embeds the class-
aware region maps associating with an image I into a multi-
dimensional label space, where each label corresponds to its
fixed size label vector ac. Therefore, the co-occurrence of
two related labels (i.e., label vectors) can be measured by their
distance in this label space. More intuitively, in the multi-label
scenario, these correlated labels (i.e., label vectors) could be
clustered, while these uncorrelated labels should be apart from
the dummy cluster, cf. Fig. 3.

Specifically, for obtaining the label vectors, we first flat-
ten the class-aware disentangled map Ac into a single vector
fflat(Ac) ∈ R1×(h×w). Then, we introduce a non-linear trans-
formation fembed(·; θembed) on fflat(Ac) for embedding it
into ac in the aforementioned label space:

ac = fembed(fflat(Ac); θembed) , (8)

where θembed is the embedding parameters. In experiments,
fembed(·; θembed) is a two-layer fully connected network with
ReLU as its activation function.

Thus, the objective of label correlation embedding be-
comes minimizing the summation of the pair-wise Euclidean

distances of correlated label vectors:

min
θembed

∑

j∈S

∑

(k<j,k∈S)

(aj − ak)2 , (9)

where the set S = {j | yj = 1}. However, for a large-scale
number of labels, Eq. (9) is computational redundancy. By
performing some transformations on the term in Eq. (9), we
have

∑

j∈S

∑

(k<j,k∈S)

(aj − ak)
2 ∝

∑

j∈S
(aj − ā)

2
. (10)

Thus, the optimization problem in Eq. (9) can be written as

min
θembed

∑

j∈S
(aj − ā)2 , (11)

where ā = 1
|S|
∑
j∈S aj is the mean label vector of all the

correlated labels. Compared with Eq. (9), Eq. (11) is compu-
tationally efficient and could contribute to fast model conver-
gence. Furthermore, considering the uncorrelated label vectors
should be apart from the label mean, the final label correlation
embedding loss function becomes

Llce =
∑

j∈S
(aj − ā)2 +

∑

k∈S

[
1− (ak − ā)2

]
+
, (12)

where the [·]+ operation indicates the hinge function max(0, ·),
and S = {k | yk = 0}. By introducing the second term[
1−∑k∈S(ak − ā)2

]
+

into Eq. (12), it can consider the re-
lationship of correlated labels and uncorrelated labels at the
same time, which can better capture the label co-occurrence
from these two different perspectives. Furthermore, it can
also prevent to obtain the trivial solution [22], i.e., ac =
fembed(fflat(Ac); θembed) = 0.

3. EXPERIMENTS

3.1. Evaluation metrics

Following conventional settings [12, 14], we report the average
per-class precision, recall, F1 (CP, CR, CF1) and the average
overall precision, recall, F1 (OP, OR, OF1) for performance
evaluation. For each image, we assign labels with confidence
greater than 0.5 as positive, and compare with the ground-truth
labels. These measures do not need a fixed number of labels
per image. Particularly, to fairly compare with exiting state-of-
the-art methods, we also report the results of top-3 labels with
highest confidences.

Additionally, the average precision (AP) for each label
and the mean average precision (mAP) are also important
for evaluating multi-label image recognition accuracy, which
are also employed for performance comparisons. In general,
average overall F1 (OF1), average per-class F1 (CF1) and
mAP are relatively more important for evaluation.



Table 1. Comparisons with state-of-the-art methods on the MS-COCO dataset.

Methods All top-3
mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

CNN-RNN [23] 61.2 – – – – – – 66.0 55.6 60.4 69.2 66.4 67.8
Order-Free RNN [24] – – – – – – – 71.6 54.8 62.1 74.2 62.2 67.7

ML-ZSL [25] – – – – – – – 74.1 64.5 69.0 – – –
SRN [12] 77.1 81.6 65.4 71.2 82.7 69.9 75.8 85.2 58.8 67.4 87.4 62.5 72.9

Multi-Evidence [14] – 80.4 70.2 74.9 85.2 72.5 78.4 84.5 62.2 70.6 89.1 64.3 74.7

ResNet-101 (Baseline) 78.3 80.2 66.7 72.8 83.9 70.8 76.8 84.1 59.4 69.7 89.1 62.8 73.6
Ours (λ = 0) 79.9 81.6 68.5 74.5 84.4 72.5 78.0 83.2 62.0 71.1 89.4 64.2 74.7

Ours (λ = 0.5) 82.3 82.5 72.2 77.0 84.0 75.6 79.6 87.1 63.6 73.5 89.4 66.0 76.0

bottle

fork

person surfboard

refrigerator

(a)

(b)

(c) cake

Fig. 4. Visualization and comparisons of class-aware disen-
tangled maps generated with (on the right) vs. without (on the
left) our label correlation embedding module.

3.2. Implementation details

In our experiments, the resolution of input images is set to
448 × 448, and we use a common pre-processing strategy,
i.e., random horizontal flip, for data augmentation. Follow-
ing [12, 14, 24, 25], ResNet-101[15] is chosen as the base
model of our proposed method. We utilize the pre-trained
model based on ImageNet for model parameter initializations.
For optimization, SGD with momentum of 0.9 is selected as
the network optimizer. The weight decay is set to 10−4. Ini-
tial learning rate is 0.01, and it is divided by 10 for every 20
epochs until 60 as the total training epochs.

3.3. Comparison with state-of-the-art methods

3.3.1. Performance on the MS-COCO dataset

Microsoft COCO [26] is a wildly used dataset for multi-label
image recognition. The training set is composed of 82, 081
images and the validation set consists of 40, 504 images. The
dataset covers 80 common object categories, and each image
contains about 3.5 labels on average. As the ground-truth
labels of the test set are not available, we evaluate the perfor-
mance of all the methods on the validation set instead. On
MS-COCO, we compare our proposed model with recent state-

of-the-art methods, e.g., CNN-RNN [23], SRN [12], Order-
Free RNN [24], ML-ZSL [25] and Multi-Evidence [14], etc.
The comparison results are reported in Table 1. It is clear that
our method outperforms the previous state-of-the-arts by a
sizable margin, especially +5.2%, +2.1%, +1.2%, +2.9%,
+1.3% improvements on the evaluation of mAP, CF1 (All),
OF1 (All), CF1 (top-3) and OF1 (top-3), respectively.

In addition, we also conduct an ablation study of our model,
i.e., directly setting the trade-off parameter λ in Eq. (5) to 0,
for validating the effectiveness of the two proposed crucial
modules. Compared with the results of λ = 0.5, the model
without label correlation embedding has a significant perfor-
mance drop, i.e., 3.2% mAP lower than our proposal.

3.3.2. Performance on the NUS-WIDE dataset

The NUS-WIDE dataset [27] is another benchmark dataset
for multi-label recognition, which contains 269, 648 images
with associated tags from Flickr. This dataset is manually
annotated by 81 concepts, with 2.4 concept labels per image
on average. Official train/test splits are utilized, i.e., 161, 789
images for training and 107, 859 images for test.

Empirical results on this dataset are shown in Table 2. Our
method achieves the best multi-label recognition performance
competing with the previous state-of-the-arts, especially on
the evaluation of mAP, CF1 (All), OF1 (All), CF1 (top-3)
and OF1 (top-3). Moreover, the ablation study validates the
effectiveness of our proposed modules: We obtain about 1%
improvement comparing with the result of λ = 0, which is
consistent with the observations on MS-COCO.

3.4. Visualization and analyses

In this section, we validate the effectiveness of our proposed
key modules (especially for label correlation embedding) by
visualization results from the qualitative perspective. We show
the class-aware disentangled maps (CADMs) in Fig. 4 for com-
parisons. Three sampled input images with the corresponding
CADMs are presented in each sub-figure. We select two of the
multiple image labels which are apparent to be observed in the
input image. For each label, the CADMs generated with our
label correlation embedding module (i.e., λ = 0.5) are shown
on the right, while the CADMs generated without label cor-



Table 2. Comparisons with state-of-the-art methods on the NUS-WIDE dataset.

Methods All top-3
mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

CNN-RNN [23] – – – – – – – 40.5 30.4 34.7 49.9 61.7 55.2
Order-Free RNN [24] – – – – – – – 59.4 50.7 54.7 69.0 71.4 70.2

ML-ZSL [25] – – – – – – – 43.4 48.2 45.7 – – –
SRN [12] 62.0 65.2 55.8 58.5 75.5 71.5 73.4 48.2 58.8 48.9 56.2 69.6 62.2

ResNet-101 (Baseline) 60.4 63.1 55.5 59.1 74.3 71.7 72.9 64.9 48.3 55.3 76.8 62.1 68.7
Ours (λ = 0) 61.6 63.7 56.1 59.7 75.7 70.5 73.0 65.4 48.8 55.9 78.3 61.4 68.8

Ours (λ = 0.5) 62.8 63.8 57.8 60.7 75.8 72.5 74.1 64.3 57.7 56.3 78.8 63.9 70.6

relation embedding (i.e., λ = 0) are shown on the left. From
these figures, it is clear to observe that when utilizing our label
correlation embedding, it could significantly strengthen the ac-
tivations of these relevant labels’ CADMs, e.g., “surfboard”
of Fig. 4 (a), “refrigerator” of Fig. 4 (b), “cake” and
“fork” of Fig. 4 (c), etc. It is reasonable to benefit the recogni-
tion of the labels whose original CADM is weak. Therefore, it
could give an intuitive and straightforward explanation on why
our model achieves outperforming multi-label image recogni-
tion accuracy on two aforementioned benchmark datasets.

4. CONCLUSION

In this paper, we proposed a unified framework for multi-label
image recognition. Our model consisted of two key modules,
i.e., class-aware map disentangling and label correlation em-
bedding. With only image-level supervision, our model can be
trained in an end-to-end manner. Experimental results and vi-
sualization analyses validated the effectiveness of the proposed
method from both quantitative and qualitative perspectives. In
the future, developing novel label correlation embedding loss
is promising for further boosting the performance.
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