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Abstract Retrieving content relevant images from a large-scale fine-
grained dataset could suffer from intolerably slow query speed and highly
redundant storage cost, due to high-dimensional real-valued embeddings
which aim to distinguish subtle visual differences of fine-grained objects.
In this paper, we study the novel fine-grained hashing topic to gener-
ate compact binary codes for fine-grained images, leveraging the search
and storage efficiency of hash learning to alleviate the aforementioned
problems. Specifically, we propose a unified end-to-end trainable network,
termed as ExchNet. Based on attention mechanisms and proposed atten-
tion constraints, ExchNet can firstly obtain both local and global features
to represent object parts and the whole fine-grained objects, respectively.
Furthermore, to ensure the discriminative ability and semantic meaning’s
consistency of these part-level features across images, we design a local
feature alignment approach by performing a feature exchanging operation.
Later, an alternating learning algorithm is employed to optimize the
whole ExchNet and then generate the final binary hash codes. Validated
by extensive experiments, our ExchNet consistently outperforms state-of-
the-art generic hashing methods on five fine-grained datasets. Moreover,
compared with other approximate nearest neighbor methods, ExchNet
achieves the best speed-up and storage reduction, revealing its efficiency
and practicality.

Keywords: Fine-Grained Image Retrieval; Learning to Hash; Feature
Alignment; Large-Scale Image Search.

1 Introduction

Fine-Grained Image Retrieval (FGIR) [36,42,43,31,26,19] is a practical but chal-
lenging computer vision task. It aims to retrieve images belonging to various
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Figure 1. Illustration of the fine-grained hashing task. Fine-grained images could share
large intra-class variances but small inter-class variances. Fine-grained hashing aims to
generate compact binary codes with tiny Hamming distances for images of the same
sub-category, as well as distinct codes for images from different sub-categories.

sub-categories of a certain meta-category (e.g., birds, cars and aircrafts) and
return images with the same sub-category as the query image. In real FGIR
applications, previous methods could suffer from slow query speed and redundant
storage costs due to both the explosive growth of massive fine-grained data and
high-dimensional real-valued features.

Learning to hash [6,10,34,35,21,17,22,16,3,14,7] has proven to be a promising
solution for large-scale image retrieval because it can greatly reduce the storage
cost and increase the query speed. As a representative research area of approximate
nearest neighbor (ANN) search [6,13,1], hashing aims to embed data points as
similarity-preserving binary codes. Recently, hashing has been successfully applied
in a wide range of image retrieval tasks, e.g., face image retrieval [18], person
re-identification [44,5], etc. We hereby explore the effectiveness of hashing for
fine-grained image retrieval.

To the best of our knowledge, this is the first work to study the fine-grained
hashing problem, which refers to the problem of designing hashing for fine-grained
objects. As shown in Figure 1, the task is desirable to generate compact binary
codes for fine-grained images sharing both large intra-class variances and small
inter-class variances. To deal with the challenging task, we propose a unified
end-to-end trainable network ExchNet to first learn fine-grained tailored features
and then generate the final binary hash codes.

In concretely, our ExchNet consists of three main modules, including repre-
sentation learning, local feature alignment and hash code learning, as shown in
Figure 2. In the representation learning module, beyond obtaining the holistic im-
age representation (i.e., global features), we also employ the attention mechanism
to capture the part-level features (i.e., local features) for representing fine-grained
objects’ parts. Localizing parts and embedding part-level cues are crucial for
fine-grained tasks, since these discriminative but subtle parts (e.g., bird heads or
tails) play a major role to distinguish different sub-categories. Moreover, we also
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Figure 2. Framework of our proposed ExchNet, which consists of three modules. 1)
The representation learning module, as well as the attention mechanism with spatial
and channel diversity learning constraints, is designed to obtain both local and global
features of fine-grained objects. 2) The local feature alignment module is used to align
obtained local features w.r.t. object parts across different fine-grained images. 3) The
hash codes learning module is performed to generate the compact binary codes.

develop two kinds of attention constraints, i.e., spatial and channel constraints,
to collaboratively work together for further improving the discriminative ability
of these local features. In the following, to ensure that these part-level features
can correspond to their own corresponding parts across different fine-grained
images, we design an anchor based feature alignment approach to align these local
features. Specifically, in the local feature alignment module, we treat the anchored
local features as the “prototype” w.r.t. its sub-category by averaging all the
local features of that part across images. Once local features are well aligned for
their own parts, even if we exchange one specific part’s local feature of an input
image with the same part’s local feature of the prototype, the image meanings
derived from the image representations and also the final hash codes should
be both extremely similar. Inspired by this motivation, we perform a feature
exchanging operation upon the anchored local features and other learned local
features, which is illustrated in Figure 3. After that, for effectively training the
network with our feature alignment fashion, we utilize an alternating algorithm
to solve the hashing learning problem and update anchor features simultaneously.

To quantitatively prove both effectiveness and efficiency of our ExchNet, we
conduct comprehensive experiments on five fine-grained benchmark datasets,
including the large-scale ones, i.e., NABirds [11], VegFru [12] and Food101 [23].
Particularly, compared with competing approximate nearest neighbor methods,
our ExchNet achieves up to hundreds times speedup for large-scale fine-grained
image retrieval without significant accuracy drops. Meanwhile, compared with
state-of-the-art generic hashing methods, ExchNet could consistently outperform
these methods by a large margin on all the fine-grained datasets. Additionally,
ablation studies and visualization results justify the effectiveness of our tailored
model designs like local feature alignment and proposed attention approach.

The contributions of this paper are summarized as follows:
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– We study the novel fine-grained hashing topic to leverage the search and
storage efficiency of hash codes for solving the challenging large-scale fine-
grained image retrieval problem.

– We propose a unified end-to-end trainable network, i.e., ExchNet, to first
learn fine-grained tailored features and then generate the final binary hash
codes. Particularly, the proposed attention constraints, local feature alignment
and anchor-based learning fashion contribute well to obtain discriminative
fine-grained representations.

– We conduct extensive experiments on five fine-grained datasets to validate
both effectiveness and efficiency of our proposed ExchNet. Especially for the
results on large-scale datasets, ExchNet exhibits its outperforming retrieval
performance on either speedup, memory usages and retrieval accuracy.

2 Related Work

Fine-Grained Image Retrieval Fine-Grained Image Retrieval (FGIR) is an
active research topic emerged in recent years, where the database and query
images could share small inter-class variance but large intra-class variance. In
previous works [36], handcrafted features were initially utilized to tackle the FGIR
problem. Powered by deep learning techniques, more and more deep learning based
FGIR methods [36,42,33,43,31,26,19,32] were proposed. These deep methods can
be roughly divided into two parts, i.e., supervised and unsupervised methods.
In supervised methods, FGIR is defined as a metric learning problem. Zheng et
al. [42] designed a novel ranking loss and a weakly-supervised attractive feature
extraction strategy to facilitate the retrieval performance. Zheng et al. [43]
improved their former work [42] with a normalize-scale layer and de-correlated
ranking loss. As to unsupervised methods, Selective Convolutional Descriptor
Aggregation (SCDA) [31] was proposed to localize the main object in fine-grained
images firstly, and then discard the noisy background and keep useful deep
descriptors for fine-grained image retrieval.

Deep Hashing Hashing methods can be divided into two categories, i.e., data-
independent methods [6] and data-dependent methods [10,17], based on whether
training points are used to learn hash functions. Generally speaking, data-
dependent methods, also named as Learning to Hash (L2H) methods, can achieve
better retrieval performance with the help of the learning on training data. With
the rise of deep learning, some L2H methods integrate deep feature learning
into hash frameworks and achieve promising performance. As previous work,
many deep hashing methods [35,21,17,22,16,3,14,7,38,2,30,40,39] for large-scale
image retrieval have been proposed. Compared with deep unsupervised hashing
methods [21,7,14], deep supervised hashing methods [35,17,16,14] can achieve
superior retrieval accuracy as they can fully explore the semantic information.
Specifically, the previous work [35] was essentially a two-stage method which
tried to learn binary codes in the first stage and employed feature learning guided
by the learned binary codes in the second stage. Then, there appeared numerous
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Figure 3. Key idea of our local feature alignment approach: Given an image pair of a
fine-grained category, exchanging their local features of the same object parts should
not change their corresponding hash codes, i.e., these hash codes should be the same as
those generated without local feature exchanging and their Hamming distance should
be still close also.

one-stage deep supervised hashing methods, including Deep Pairwise Supervised
Hashing (DPSH) [17], Deep Supervised Hashing (DSH) [22], and Deep Cauchy
Hashing (DCH) [3], which aimed to integrate feature learning and hash code
learning into an end-to-end framework.

3 Methodology

The framework of our ExchNet is presented in Figure 2, which contains three
key modules, i.e., the representation learning module, local feature alignment
module, and hash code learning module.

3.1 Representation Learning

The learning of discriminative and meaningful local features is mutually cor-
related with fine-grained tasks [20,15,37,41,9], since these local features can
greatly benefit the distinguishing of sub-categories with subtle visual differences
deriving from the discriminative fine-grained parts (e.g., bird heads or tails) .
In consequence, as shown in Figure 2, beyond the global feature extractor, we
also introduce a local feature extractor in the representation learning module.
Specifically, by considering model efficiency, we hereby propose to learn local
features with the attention mechanism, rather than other fine-grained techniques
with tremendous computation cost, e.g., second-order representations [20,15] or
complicated network architectures [37,41,9].

Given an input image xi, a backbone CNN is utilized to extract a holistic
deep feature Ei ∈ RH×W×C , which serves as the appetizer for both the local
feature extractor and the global feature extractor.

It is worth mentioning that the attention is engaged in the middle of the
feature extractor. Since, in the shallow layers of deep neural networks, low-level
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context information (e.g., colors and edges, etc.) are well preserved, which is
crucial for distinguish subtle visual differences of fine-grained objects. Then, by
feeding Ei into the attention generation module, M pieces of attention maps
Ai ∈ RM×H×W are generated and we use Aj

i ∈ RH×W to denote the attentive
region of the j-th (j ∈ {1, . . . ,M}) part cues for xi. After that, the obtained
part-level attention map Aj

i is element-wisely multiplied on Ei to select the
attentive local feature corresponding to the j-th part, which is formulated as:

Êj
i = Ei ⊗Aj

i , (1)

where Êj
i ∈ RH×W×C represents the j-th attentive local feature of xi, and

“⊗” denotes the Hadamard product on each channel. For simplification, we use
Êi = {Ê1

i , . . . , Ê
M
i } to denote a set of local features and, subsequently, Êi is fed

into the later Local Features Refinement (LFR) network composed of a stack
of convolution layers to embed these attentive local features into higher-level
semantic meanings:

Fi = fLFR(Êi), (2)

where the output of the network is denoted as Fi = {F 1
i , . . . ,F

M
i }, which

represents the final local feature maps w.r.t. high-level semantics. We denote
f ji ∈ RC′

as the local feature vector after applying global average pooling (GAP)

on F ji ∈ RH′×W ′×C′
as:

f ji = fGAP(F
j
i ) . (3)

On the other side, as to the global feature extractor, for xi, we directly
adopt a Global Features Refinement (GFR) network composed of conventional
convolutional operations to embed Ei, which is presented by:

F global
i = fGFR(Ei) . (4)

We use F global
i ∈ RH′×W ′×C′

and fglobal
i ∈ RC′

to denote the learned global
feature and the corresponding holistic feature vector after GAP, respectively.

Furthermore, to facilitate the learning of localizing local feature cues (i.e.,
capturing fine-grained parts), we impose the spatial diversity and channel diversity
constraints over the local features in Fi.

Specifically, it is a natural choice to increase the diversity of local features by
differentiating the distributions of attention maps [41]. However, it might cause a
problem that the holistic feature can not be activated in some spatial positions,
while the attention map has large activation values on them due to over-applied
constraints upon the learned attention maps. Instead, in our method, we design
and apply constraints on the local features. In concretely, for the local feature
F ji , we obtain its “aggregation map” Âj

i ∈ RH′×W ′
by adding all C ′ feature

maps through the channel dimension and apply the softmax function on it for
converting it into a valid distribution, then flat it into a vector âji . Based on the
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Hellinger distance, we propose a spatial diversity induced loss as:

Lsp(xi) = 1− 1√
2
(
M
2

) M∑
l,k=1

∥∥∥∥√âli −√âki ∥∥∥∥
2

, (5)

where
(
M
2

)
is used to denote the combinatorial number of ways to pick 2 un-

ordered outcomes from M possibilities. The spatial diversity constraint drives
the aggregation maps to be activated in spatial positions as diverse as possible.
As to the channel diversity constraint, we first convert the local feature vector
f ji into a valid distribution, which can be formulated by

pji = softmax(f ji ), ∀j ∈ {1, . . . ,M}. (6)

Subsequently, we propose a constraint loss over {pji}Mj=1 as:

Lcp(xi) =

t− 1√
2
(
M
2

) M∑
l,k=1

∥∥∥∥√pli −√pki ∥∥∥∥
2


+

, (7)

where t ∈ [0, 1] is a hyper-parameter to adjust the diversity and [·]+ denotes
max(·, 0). Equipping with the channel diversity constraint could benefit the
network to depress redundancies in features through channel dimensions. Overall,
our spatial diversity and channel diversity constraints can work in a collaborative
way to obtain discriminative local features.

3.2 Learning to Align by Local Feature Exchanging

Upon the representation learning module, the alignment on local features is
necessary for confirming that they represent and more importantly correspond
to common fine-grained parts across images, which are essential to fine-grained
tasks. Hence, we propose an anchor-based local features alignment approach
assisted with our feature exchanging operation.

Intuitively, local features from the same object part (e.g., bird heads of a
bird species) should be embedded with almost the same semantic meaning. As
illustrated by Figure 3, our key idea is that, if local features were well aligned,
exchanging the features of identical parts for two input images belonging to
the same sub-category should not change the generated hash codes. Inspired by
that, we propose a local feature alignment strategy by leveraging the feature
exchanging operation, which happens between learned local features and anchored
local features. As a foundation for feature exchanging, a set of dynamic anchored
local features Cyi = {c1yi , . . . , c

M
yi } for class yi should be maintained, in which

the j-th anchored local feature cjyi is obtained by averaging all j-th part’s local
features of training samples from class yi. At the end of each training epoch,
anchored local features will be recalculated and updated. Subsequently, as shown
in Figure 4, for a sample xi whose category is yi, we exchange a half of the
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Figure 4. Our feature exchanging and hash codes learning in the training phase.
According to the class indices (i.e., yi and yj), we first select categorical anchor features
Cyi and Cyj for samples xi and xj , respectively. Then, for each input image, the feature
exchanging operation is conducted between its learned and anchored local features.
After that, hash codes are generated with exchanged features and the learning is driven
by preserving pairwise similarities of hash codes ui and vj .

learned local features in Gi = {f1
i , . . . ,f

M
i } with its corresponding anchored local

features in Cyi = {c1yi , . . . , c
M
yi }. The exchanging process can be formulated as:

∀j ∈ {1, . . . ,M}, f̂ ji ,

{
f ji , if ξj ≥ 0.5,

cjyi , otherwise,
(8)

where ξj ∼ B(0.5) is a random variable following the Bernoulli distribution

for the j-th part. The local features after exchanging are denoted as Ĝi =
{f̂1

i , . . . , f̂
M
i } and fed into the hashing learning module for generating binary

codes and computing similarity preservation losses.

3.3 Hash Code Learning

After obtaining both global features and local features, we concatenate them
together and feed them into the hashing learning module. Specifically, the hashing
network contains a fully connected layer and a sign(·) activation function layer. In
our method, we choose an asymmetric hashing for ExchNet for its flexibility [25].
Concretely, we utilize two hash functions, defined as g(·) and h(·), to learn two
different binary codes for the same training sample. The learning procedure is as
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follows:

ui = g([Ĝi;fglobal
i ]cat) = sign(W (g)[Ĝi;fglobal

i ]cat), (9)

vi = h([Ĝi;fglobal
i ]cat) = sign(W (h)[Ĝi;fglobal

i ]cat), (10)

where [; ]cat denotes the concatenation operator, and ui,vi ∈ {−1,+1}q denote
the two different binary codes of the i-th sample. q represents the code length.
W (g) and W (h) present the parameters of hash functions g(·) and h(·)*, re-
spectively. We denote U = {ui}ni=1 and V = {vi}ni=1 as learned binary codes.
Inspired by [14], we only keep binary codes vi and set hash function h(·) implicitly.
Hence, we can perform feature learning and binary codes learning simultaneously.

To preserve the pairwise similarity, we adopt the squared loss and define the
following objective function:

Lsq(ui,vj ,C) =
(
u>i vj − qSij

)2
, (11)

where ui = g([Ĝi;fglobal
i ]cat), Sij is the pairwise similarity label and C = {Ci}Mi=1.

We use Θ to denote the parameters of deep neural network and hash layer. The
aforementioned process is generally illustrated by Figure 4.

Due to the zero-gradient problem caused by the sign(·) function, Lsq(·, ·, ·)
becomes intractable to optimize. In this paper, we relax g(·) = sign(·) into
ĝ(·) = tanh(·) to alleviate this problem. Then, we can derive the following loss
function:

L̂sq(ûi,vj ,C) =
(
û>i vj − qSij

)2
, (12)

where ûi = ĝ([Ĝi;fglobal
i ]cat) and U is relaxed as Û = {ûi}ni=1.

Then, given a set of image samples X = {x1, . . . ,xn} and their pairwise
labels S = {Sij}ni,j=1, we can get the following objective function by combining
Equation (5), (7) and (12):

min
V ,Θ,C

L(X ) =

n∑
i,j=1

L̂sq(ûi,vj ;Sij) + λ

n∑
i=1

Lsp(xi) + γ

n∑
i=1

Lcp(xi) (13)

s.t. ∀i ∈ {1, . . . , n}, ûi = ĝ([Ĝi;fglobal
i ]cat),vj ∈ {−1,+1}q,

where Sij represents the similarity between the i-th and j-th samples, q denotes
the code length, λ and γ are hyper-parameters.

3.4 Learning Algorithm

To solve the optimization problem in Equation (13), we design an alternating
algorithm to learn V , Θ, and C. Specifically, we learn one parameter with the
others fixed.

*
We omit the bias term for simplicity.
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Learn Θ with V and C fixed When V , C fixed, we use back-propagation (BP)
to update the parameters Θ. In particular, for input sample xi, we first calculate
the following gradient:

∇ΘL(X) =

n∑
i,j=1

∇ΘLsq(ûi,vj) + λ

n∑
i=1

∇ΘLsp(xi) + γ

n∑
i=1

∇ΘLcp(xi). (14)

Then, we use the back-propagation algorithm to update Θ.

Learn V with Θ and C fixed When Θ, C are fixed, we rewrite L(V ) as
follows:

L(V ) =

n∑
i,j=1

(
û>i vj − qSij

)2
= ‖ŨV > − qS‖2F (15)

= ‖ŨV >‖2F − 2qtr(S>ŨV >) + const. (16)

Because V is defined over {−1,+1}n×q, we learn V column by column as
that in ADSH [14]. Specifically, we can get the closed-form solution for the k-th
column V∗k as follows:

V∗k = sign(V/kŨ
>
/kŨ∗k − qQ∗k), (17)

where Q = S>Ũ and V/k denotes the matrix excluding the k-th column .

Learn C with V and Θ fixed When Θ, V fixed, we use the following equation
to update each Ci ∈ C:

∀k, cki =
1

ni

ni∑
i=1

fki , (18)

where ni denotes the number of samples in class yi.

3.5 Out-of-Sample Extension

When we finish the training phase, we can generate the binary code for the
sample xi by ui = sign(W (g)[Gi;fglobal

i ]cat).

4 Experiments

4.1 Datasets

For comparisons, we select two widely used fine-grained datasets, i.e., CUB [29]
and Aircraft [24], as well as three popular large-scale fine-grained datasets, i.e.,
NABirds [11], VegFru [12], and Food101 [23], to conduct experiments.
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Specifically, CUB is a bird classification benchmark dataset containing 11, 788
images from 200 bird species. It is officially split into 5, 994 for training and 5, 794
for test. Aircraft contains 10, 000 images from 100 kinds of aircraft model variants
with 6667 for training and 3333 for test. Moreover, for large-scale datasets,
NABirds has 555 common species of birds in North America with 23, 929 training
images and 24, 633 test images. VegFru is a large-scale fine-grained dataset
covering vegetables and fruits from 292 categories with 29, 200 for training and
116, 931 for test.Food101 contains 101 kinds of foods with 101, 000 images. For
each class, 250 test images are manually reviewed for correctness while 750
training images still contain some amount of noises.

4.2 Baselines and Implementation Details

Baselines For comparisons with other ANN algorithms, we select two tree-based
ANN methods, i.e., BallTree [8] and KDTree [1], and one production quantization
based ANN method, i.e., Product Quantization (PQ) [13]. The linear scan means
that we directly perform exhaustive search based on the learned real-valued
features. For comparisons with other hashing baselines, we choose eight state-of-
the-art generic hashing methods. They are LSH [6], SH [34], ITQ [10], SDH [28],
DPSH [17], DSH [22], HashNet [4], and ADSH [14]. Among these methods, DPSH,
DSH, HashNet and ADSH are based on deep learning and others are not.

Implementation Details For comparisons with other ANN algorithms, we
carry out experiments on Food101 in which the database is the largest. We
first utilize the triplet loss [27] to learn 512-D and 1024-D feature embeddings
for its frequent usages in fine-grained retrieval tasks. Then, the performance
of linear scan is tested on the learned features. More experimental settings
about BallTree [8], KDTree [1] and PQ [13] can be found in the supplementary
materials. For our ExchNet, the retrieval procedure is divided into coarse ranking
to select top N as candidates and re-ranking to return top K (K < N) from
top N candidates. We adopt the real-valued features learned with the triplet
loss directly. As presented in Table 1, we report results including precision at
top K (P@K), wall clock time (WC time), speed up ratio, and memory cost.

Our backbone employs the first three stages of ResNet50 and the attention
generation module is the fourth stage of ResNet50 without downsample convo-
lutions. The LFR and GFR of ExchNet are independent networks, sharing the
same architecture with the fourth stage of ResNet50. The optimizer is standard
mini-batch stochastic gradient descent with weight decay 1 × 10−4. The mini-
batch size M is set to 64 and the iteration times Tmax is 100. Learning rate is
set to 0.001, which is divided by 10 at the 60-th and 80-th iteration, respectively.
The hyper-parameter t is set to 0.4. The number of training epochs is 20. For
efficient training, we randomly sample a subset of the training set in each epoch.
Specifically, for CUB , Aircraft , Food101 , we sample 2,000 samples per epoch,
while 4,000 samples are randomly selected for other datasets. To provide reliable
local features for our local feature alignment strategy, in the first 50 iterations,
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Table 1. Retrieval performance comparisons on the Food101 dataset.

Method
512-dim 1024-dim

P@10(↑) WCtime(↓) Speedup(↑) Memory(↓) P@10(↑) WCtime(↓) Speedup(↑) Memory(↓)
Linear 80.05% 9,481.03 1× 207.2MB 80.28% 22,377.96 1× 414.1MB
BallTree 77.22% 236.23 40.13× 28.1MB 77.74% 213.88 104.62× 28.1MB
KDTree 77.42% 70.16 135.13× 28.8MB 77.73% 73.57 304.14× 28.7MB
PQ 77.12% 43.49 217.99× 524.5KB 77.18% 72.47 308.74× 1.0MB
Ours 77.69% 40.54 233.85× 404.0KB 78.06% 56.57 395.53× 404.0KB

Table 2. Comparisons of retrieval accuracy (MAP) on all the fine-grained datasets.

Method #Bits LSH SH ITQ SDH DPSH DSH HashNet ADSH Ours

CUB

12bits 2.26% 5.55% 6.80% 10.52% 8.68% 4.48% 12.03% 20.03% 25.14%
24bits 3.59% 6.72% 9.42% 16.95% 12.51% 7.97% 17.77% 50.33% 58.98%
32bits 5.01% 7.63% 11.19% 20.43% 12.74% 7.72% 19.93% 61.68% 67.74%
48bits 6.16% 8.32% 12.45% 22.23% 15.58% 11.81% 22.13% 65.43% 71.05%

Aircraft

12bits 1.69% 3.28% 4.38% 4.89% 8.74% 8.14% 14.91% 15.54% 33.27%
24bits 2.19% 3.85% 5.28% 6.36% 10.87% 10.66% 17.75% 23.09% 45.83%
32bits 2.38% 4.04% 5.82% 6.90% 13.54% 12.21% 19.42% 30.37% 51.83%
48bits 2.82% 4.28% 6.05% 7.65% 13.94% 14.45% 20.32% 50.65% 59.05%

NABirds

12bits 0.90% 2.12% 2.53% 3.10% 2.17% 1.56% 2.34% 2.53% 5.22%
24bits 1.68% 3.14% 4.22% 6.72% 4.08% 2.33% 3.29% 8.23% 15.69%
32bits 2.43% 3.71% 5.38% 8.86% 3.61% 2.44% 4.52% 14.71% 21.94%
48bits 3.09% 4.05% 6.10% 10.38% 3.20% 3.42% 4.97% 25.34% 34.81%

VegFru

12bits 1.28% 2.36% 3.05% 5.92% 6.33% 4.60% 3.70% 8.24% 23.55%
24bits 2.21% 4.04% 5.51% 11.55% 9.05% 8.91% 6.24% 24.90% 35.93%
32bits 3.39% 5.65% 7.48% 14.55% 10.28% 11.23% 7.83% 36.53% 48.27%
48bits 4.51% 6.56% 8.74% 16.45% 9.11% 17.12% 10.29% 55.15% 69.30%

Food101

12bits 1.57% 4.51% 6.46% 10.21% 11.82% 6.51% 24.42% 35.64% 45.63%
24bits 2.48% 5.79% 8.20% 11.44% 13.05% 8.97% 34.48% 40.93% 55.48%
32bits 2.64% 5.91% 9.70% 13.36% 16.41% 13.10% 35.90% 42.89% 56.39%
48bits 3.07% 6.63% 10.07% 15.55% 20.06% 17.18% 39.65% 48.81% 64.19%

since both local and global features are not well learned, the part-level feature
exchanging operation is disabled for avoiding aligning meaningless local features.

4.3 Comparisons with other ANN Methods

To prove the practicality and effectiveness of our proposed method, comparisons
with other ANN methods are presented in this section. All experiments are
conducted based on hash codes of 32bits generated by our model.

In Table 1, we present the retrieval performance on the Food101 dataset.
Specifically, we present the P@10, WC time, speedup, and memory cost for all
methods. We can observe that, compared with the linear search, our method
can achieve up to 233× and 395× acceleration on features of 512-D and 1024-D,
respectively. The memory cost of our method is also much less than tree-based
methods. The best speed-up and the lowest storage usage prove the practicality
of our proposed method. Meanwhile, our method can achieve state-of-the-art
retrieval accuracies, which demonstrates that our ExchNet is the most effective
one compared with other ANN methods. Above results illustrate our ExchNet
deserves to be the optimal choice for fine-grained image retrieval.
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4.4 Comparisons with State-of-the-art Hashing Methods

In Table 2, we present the mean average precision (MAP) results for comparisons
with state-of-the-art hashing methods on all datasets. From Table 2, we can
observe that our method can achieve the best retrieval performance in all cases.
On fine-grained datasets (CUB and Aircraft) of relatively small size, almost all
the generic hashing methods (except for ADSH) can not achieve a satisfactory
performance, i.e., a relatively low MAP. Also, our ExchNet outperforms the most
powerful baseline ADSH considerably. It can verify that given limited training
data, our proposed method could still perform well. As to large-scale fine-grained
datasets, the improvements become more significant. Particularly, comparing
with the most powerful baselines, we achieve 12% and 14% MAP improvements
on the 32 bits and 48 bits evaluation experiments of the large-scale VegFru
dataset. Meanwhile, we achieve 14% and 16% MAP improvements on the 32 bits
and 48 bits experiments of the Food101 dataset. It shows that, with sufficient
training data, we can get better retrieval results with our ExchNet on large-scale
fine-grained datasets.

4.5 Ablation Studies

Effectiveness of the Exchanging-based Feature Alignment We verify
the effectiveness of the local feature alignment approach (cf. Section 3.2) in
this section. The retrieval accuracy are present in Figure 5, where “Ours w/o
Exchange” means that we do not perform the feature exchanging operation (i.e.,
the local feature alignment) during training. Note that “Ours w/o Exchange” is
degenerated to the ADSH [14] learned with our proposed representation learning
architecture instead of ResNet50. Hence, we also present the results of ADSH.

It can be observed that our method can achieve the best accuracy thanks to
the feature exchanging operation. Specifically, on CUB and Aircraft datasets, our
proposed method with the exchanging operation performs considerably better
than that without exchanging. The performance improvement on the large-scale
fine-grained datasets (e.g., Food101 ) becomes more significant. Above results
illustrate that our proposed local features alignment strategy is effective, especially
on large-scale datasets. Moreover, even if bits of hash codes are limited, our
feature alignment strategy could still benefit fine-grained retrieval greatly.

Sensitivity to Hyper Parameter M In our ExchNet, we use M to denote
the number of local features, which is also the number of attention maps. In this
section, we present the influence of the hyper-parameter M by ablation studies.

As presented in Figure 6, we vary M as 2, 4 and 6. From that figure, it is
observed that satisfactory retrieval accuracies are achieved regardless of different
M values, and the best fine-grained retrieval accuracy is obtained when M = 4. As
analyzed, redundant local features (i.e., overmuch object parts when M is large)
might cause redundancies in local feature representations, while the lack of local
features (i.e., scant object parts when M is small) may result in that fine-grained
images are under-represented for distinguishing subtle visual differences. Those
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Figure 5. Effectiveness of our feature exchanging operation.
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Figure 6. Influence of hyper parameter M which denotes the number of local features.

might be the reasons why M is too small or large will cause slightly accuracy
drops. Moreover, comparable retrieval results of different M values show that
our ExchNet is not sensitive to M .

5 Conclusions

In this paper, we studied the practical but challenging fine-grained hashing task,
which aims to solve large-scale FGIR problems by leveraging the search and
storage efficiency of compact hash codes. Specifically, we proposed a unified
network ExchNet to obtain representative fine-grained local and global features
by performing our attention approach equipped with the tailored attention con-
straints. Then, ExchNet utilized its local feature alignment to align these local
features to their corresponding object parts across images. Later, an alternating
learning algorithm was employed to return the final fine-grained binary codes.
Compared with ANN methods and competing generic hash methods, experiments
validated both effectiveness and efficiency of our ExchNet. In the future, we
would like to explore a more challenging unsupervised fine-grained hashing topic.
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