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Abstract

In this paper, we tackle the domain adaptive object detec-
tion problem, where the main challenge lies in significant
domain gaps between source and target domains. Previous
work seeks to plainly align image-level and instance-level
shifts to eventually minimize the domain discrepancy. How-
ever, they still overlook to match crucial image regions and
important instances across domains, which will strongly af-
fect domain shift mitigation. In this work, we propose a
simple but effective categorical regularization framework for
alleviating this issue. It can be applied as a plug-and-play
component on a series of Domain Adaptive Faster R-CNN
methods which are prominent for dealing with domain adap-
tive detection. Specifically, by integrating an image-level
multi-label classifier upon the detection backbone, we can
obtain the sparse but crucial image regions corresponding
to categorical information, thanks to the weakly localization
ability of the classification manner. Meanwhile, at the in-
stance level, we leverage the categorical consistency between
image-level predictions (by the classifier) and instance-level
predictions (by the detection head) as a regularization factor
to automatically hunt for the hard aligned instances of tar-
get domains. Extensive experiments of various domain shift
scenarios show that our method obtains a significant perfor-
mance gain over original Domain Adaptive Faster R-CNN
detectors. Furthermore, qualitative visualization and analy-
ses can demonstrate the ability of our method for attending
on the key regions/instances targeting on domain adapta-
tion. Our code is open-source and available at https:
//github.com/Megvii-Nanjing/CR-DA-DET.

1. Introduction
Object detection is a fundamental task in computer vision,

which aims to identify and localize objects of interest in an
image. In the past decade, remarkable progress has been
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Figure 1. First row: Exampled images from Cityscapes [2] (source)
and Foggy Cityscapes [29] (target). Second row: Heatmaps by the
backbone network (VGG-16 [31]) of DA Faster R-CNN [1]. Third
row: Heatmaps by the backbone network of DA Faster R-CNN
trained with our categorical regularization framework. Our regu-
larization framework enables more accurate alignment for crucial
regions and important instances, and thus can assist the backbone
network to activate the main objects of interest more accurately in
both domains, and lead to better adaptive detection performance.

witnessed for object detection, with the advances of large-
scale benchmarks [19] and modern CNN-based detection
frameworks, such as Fast/Faster R-CNN [8, 25]. However,
state-of-the-art detectors require massive training images
with bounding box annotations. This limits their generaliza-
tion ability when facing new environments (i.e., the target
domain) where the object appearance, background, and even
weather condition significantly differ from the training im-
ages (i.e., the source domain). Meanwhile, due to the high
cost of box annotations, it is not always feasible to acquire
sufficient annotated training images from new environments.

In such situations, unsupervised domain adaptation offers
an appealing solution by adapting object detectors from label-
rich source domains to unlabeled target domains. Among a
large number of methods, a promising manner for domain
adaptation is to utilize the domain classifier to measure do-
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Figure 2. Overview of our categorical regularization framework: a plug-and-play component for the Domain Adaptive Faster R-CNN
series [1, 28]. Our framework consists of two modules, i.e., image-level categorical regularization (ICR) and categorical consistency
regularization (CCR). The ICR module is an image-level multi-label classifier upon the detection backbone, which exploits the weakly
localization ability of classification CNNs to obtain crucial regions corresponding to categorical information. The CCR module considers the
consistency between the image-level and instance-level predictions as a novel regularization factor, which can be used to automatically hunt
for hard aligned instances in the target domain during instance-level alignment.

main discrepancy, and train the domain classifier and feature
extractor in an adversarial way [5, 33]. In the literature,
adversarial training has been well-studied for domain adap-
tive image classification [5, 6, 22, 33], semantic segmenta-
tion [13, 30, 32] and object detection [1, 28, 41, 12].

Among many domain adaptive detection methods, Do-
main Adaptive (DA) Faster R-CNN [1] is the most repre-
sentative work that integrates Faster R-CNN [25] with ad-
versarial training. To address the domain shift problem, it
aligns both the image and instance distributions across do-
mains with adversarial training. Recently, DA Faster R-CNN
has rapidly evolved into a successful series [28, 41, 12, 14].
Specifically, Saito et al. [28] and Zhu et al. [41] improved
DA Faster R-CNN based on the observation that the plain
image-level alignment forces to align non-transferable back-
grounds, while the object detection task by nature focuses
on local regions that may contain objects of interest. Further-
more, although instance-level alignment can match object
proposals in both domains, current practices [1, 12] lack
the ability of identifying the hard aligned instances from
excessive low-value region proposals.

Aiming at these issues, we propose a novel categori-
cal regularization framework, which can assist the Domain
Adaptive Faster R-CNN series [1, 28] to focus on aligning
the crucial regions and important instances cross domains.
Thanks to the accurate alignment for such regions and in-
stances, the detection backbone networks can activate objects
of interest more accurately in both domains (cf. Figure 1),
and thus lead to better adaptive object detection results.

Concretely, our framework consists of two regularization

modules, i.e., image-level categorical regularization (ICR),
and categorical consistency regularization (CCR) (cf. Fig-
ure 2). For image-level categorical regularization, we attach
the detection backbone network with an image-level multi-
label classifier, and train it with categorical supervisions
from the source domain. The classification manner enables
the backbone to learn object-level concepts from the holistic
images, without being affected by the distribution of non-
transferable source backgrounds [39, 40]. It allows us to
implicitly align the crucial regions on both domains at the
image level. For categorical consistency regularization, we
take into account the consistency between image-level pre-
dictions by the attached classifier and instance-level predic-
tions by the detector. We adopt this categorical consistency
as a novel regularization factor, and use it to increase the
weights of the hard aligned instances in the target domain
during instance-level alignment.

The main contributions of this work are three-fold:

• We present a novel categorical regularization frame-
work for domain adaptive object detection, which can
be applied as a plug-and-play component for the promi-
nent Domain Adaptive Faster R-CNN series. Our frame-
work is cost-free as requiring no further annotations,
and also hyperparameter-free for performing on the
vanilla detectors.

• We design two regularization modules, by exploiting
the weakly localization ability of classification CNNs
and the categorical consistency between image-level
and instance-level predictions. They enable us to fo-



cus on aligning object-related regions and hard aligned
instances that are directly pertinent to object detection.

• We conduct extensive experiments of various domain
shift scenarios to validate the effectiveness of our cate-
gorical regularization framework. Our framework can
significantly boost the performance of existing Domain
Adaptive Faster R-CNN detectors [1, 28], and produce
state-of-the-art results on benchmark datasets.

2. Preliminaries and Related Work
2.1. CNN-based Object Detection

In the past few years, the rise of deep convolutional neu-
ral networks led to a sharp paradigm shift of object de-
tection [20]. Among a large number of approaches, the
two-stage R-CNN series [9, 8, 25, 17] have become the
mainstream detection framework. The pioneer work, i.e.,
R-CNN [9], extracts region proposals from the image with
low-level vision techniques [34], and applies a network to
classify each region of interest (RoI) independently. Fast R-
CNN [8] improves R-CNN by sharing convolutional features
among RoIs, and thus enables fast training and inference.
Faster R-CNN [25] advances the region proposal genera-
tion process with a Region Proposal Network (RPN). RPN
shares the feature extraction backbone with the detection
head, which in essence is a Fast R-CNN [8]. Faster R-
CNN is a famous two-stage detection framework, and is
the foundation for many follow-up works [7, 3, 17]. While
recently single-stage detectors have emerged as a popular
paradigm [24, 21, 18], many top-performing systems still
adopt the proven two-stage pipeline [17, 10].

Thanks to the flexibility of Faster R-CNN, recently, it
is widely adapted for domain adaptive object detection [1,
28, 41, 12] with adversarial training [5]. Other approaches,
such as self-training [16, 26], are also exploited for domain
adaptive object detection in the literature.

2.2. Domain Adaptive Faster R-CNN Series

Domain Adaptive (DA) Faster R-CNN [1] is a prominent
two-stage object detector for dealing with the challenging
domain adaptive object detection problem. It is an intu-
itive extension of Faster R-CNN [25], which aligns both
the image and instance distributions by learning domain
classifiers in an adversarial manner. For the image-level
alignment, the domain classifier is trained on each activa-
tion (channel-wise descriptor) from the feature map after
the base convolutional layers, while for instance-level align-
ment, the domain classifier is trained with instance-level RoI
features. Furthermore, the consistency between image-level
and instance-level domain classifiers is enforced to learn the
cross-domain robustness for RPN.

Formally, for a given image, let D=0 denote that it is
from the source domain while D=1 denote that it is from

the target domain. Let D̂(u,v) denote the output of the image-
level domain classifier for the activation located at (u, v) of
the feature map, then the image-level alignment loss can be
written as

Limg=−
∑
u,v

[
DlogD̂(u,v)+(1−D)log(1−D̂(u,v))

]
. (1)

Let D̂j denote the output of the instance-level domain clas-
sifier for the j-th region proposal, then the instance-level
alignment loss is as follows

Lins = −
∑
j

[
D log D̂j + (1−D) log(1− D̂j)

]
. (2)

Furthermore, let Lcst denote the consistency loss for image-
level and instance-level domain classifiers, and let Ldet be
the original training loss for Faster R-CNN [25]. The overall
objective LDAF for DA Faster R-CNN can be written as

LDAF = Ldet + λ · (Limg + Lins + Lcst), (3)

where λ is a hyper-parameter to balance the detection loss
and the domain adaptation components. The adversarial
training for adaptation components is implemented by the
gradient reverse layer (GRL) [5], where the sign of gradients
is flipped when training the base convolutional layers.

As aforementioned, DA Faster R-CNN [1] may fail to
align the crucial regions and important instances which are
crucial for adaptive detection. Meanwhile, it tends to fit
the distribution of non-transferable source backgrounds, as
the training process involves a large amount of background
proposals. Recent works attempted to improve DA Faster
R-CNN by replacing the plain image-level alignment model
with a weak alignment model [28] or a region-level align-
ment model [41], and found that the instance-level alignment
model is not necessary in presence of other local alignment
model [28]. We term to these methods collectively as Do-
main Adaptive Faster R-CNN series.

A high-level diagram of Domain Adaptive Faster R-CNN
series is shown in Figure 2 (a), where we follow the paradigm
of DA Faster R-CNN [1] but omit the part of Lcst which is
not an essential ingredient in our regularization framework.
Please note that Figure 2 (a) is a conceptual diagram, and
not all components of the Domain Adaptive Faster R-CNN
series strictly follow this structure.

2.3. Weakly Localization by Classification CNNs

It is widely acknowledged that CNNs trained for single-
label image classification tend to produce high responses on
the local regions containing the main objects [38, 40, 39].
Analogously, CNNs trained for multi-label classification also
have the weakly localization ability for the objects associated
with image-level categories [35, 36].



Figure 3. Visualization of the weakly localization ability of multi-
label classification CNNs. The CNN model is VGG-16 trained on
Cityscapes [2].

Taking the Cityscapes [2] dataset for an example, we col-
lect all instance-level labels into an image-level label vector,
and train VGG-16 [31] for multi-label image classification.
Figure 3 shows the heatmaps for two exampled images from
Cityscapes, where the main objects related to image-level
categories such as “car”, “person” and “rider” are weakly
localized.

3. Approach
3.1. Framework Overview

The overview of our categorical regularization framework
is illustrated in Figure 2. In general, our framework improves
the DA Faster R-CNN series detectors [1, 28, 12] by explor-
ing categorical regularization from two aspects: image-level
categorical regularization (ICR) and categorical consistency
regularization (CCR). Note that the ICR module does not
depend on the CCR module, and thus it can be individu-
ally integrated with DA Faster R-CNN detectors which only
perform image-level alignment [28].

Our framework enables better alignment of crucial re-
gions and important instances across domains. Consequently,
the detection backbone produces more accurate activations
on objects of interest of both domains (cf. Figure 1), leading
to better adaptive detection performance. Our framework is
flexible and generalizable – it does not depend on specific
algorithms for either image or instance alignment.

3.2. Image-Level Categorical Regularization

Image-level categorical regularization (ICR) is exploited
to obtain the sparse but crucial image regions corresponding
to categorical information. We achieve this with a weakly su-
pervised solution, which can learn discriminative features for
objects of interest, without being affected by the distribution
of non-transferable source backgrounds. While the standard
training for Faster R-CNN can learn discriminative features
for objects of interest, it tends to fit the source backgrounds
due to the large amount of background RoIs sampled for
training. Since the patterns of source backgrounds are non-

transferable, plain image-level alignment may lead to noisy
activations in target domains (cf. Figure 1).

In our proposal, as illustrated in Figure 2 (b), we attach the
detection backbone with an image-level multi-label classifier,
and train it with supervisions from the source domain. Such
categorical supervisions are cost-free for detection datasets,
and can be easily acquired by collecting all instance-level
categories in an image into an image-level categorical vector.

Given the detection backbone network, we perform global
average pooling on the output of the last convolutional layer,
and feed the pooled features into a plain multi-label classifier
implemented by a 1×1 convolution. We train this image-
level classifier with the standard cross-entropy multi-label
loss by

LICR =
∑C

c=1
yc log(ŷc) + (1− yc) log(1− ŷc), (4)

where C is the total number of categories of a detection
dataset, yc is the ground truth label, and ŷc is the predicted
one. yc = 1 denotes that there is at least one object of
category c appearing in this image, while yc = 0 means
there is no object of category c in the image.

The image-level categorical supervisions encourage the
detection backbone to learn category-specific features that
can activate object-related regions. This allows us to align
the crucial regions of both domains with an image-level align-
ment model (e.g., Equation (2)). Meanwhile, because there
is no background supervision involved in the training process
of our image-level multi-label classifier, the risk of fitting
(even over-fitting) non-transferable source backgrounds is
greatly reduced.

3.3. Categorical Consistency Regularization

We design a categorical consistency regularization (CCR)
module to automatically hunt for the hard aligned instances
in target domains. Our motivation lies in two aspects. First,
current instance alignment models [1, 12] may be dominated
by the excessive low-value background proposals, as they
can not identify the hard foreground instances in the target
domain. Second, the attached image-level classifier and the
instance-level detection head are complementary, because
the former exploits the whole image-level context while the
latter enjoys more accurate RoI features.

Building upon those above considerations, we adopt
the categorical consistency between the image-level and
instance-level predictions as a measure for the hardness of
classifying a certain target instance. Intuitively, if the image-
level classifier predicts that there is no “person” in a target
image while the detection head classifies a certain instance
as “person”, this instance should be a hard but informative
sample for current detection model. Therefore, we utilize
this consistency as a regularization factor to increase the
weight of hard aligned samples in target domains during
instance-level alignment.



Specifically, assume that the detection head classifies
the j-th instance in a target image as category c, we let
p̂cj denote the estimated probability. Using the notation in
Equation (4), we let ŷc denote the image-level estimation of
the probability that this image contains objects of category
c. We define the following distance function to measure
the categorical consistency between the instance-level and
image-level predictions as

dj = e|p̂
c
j−ŷ

c|. (5)

Here the exponent form characterizes the intuition that while
a small disagreement may come from the model’s variance,
a large disagreement should be attributed to the hardness in
classifying this instance.

We use Equation (5) to weight the instance-level adversar-
ial loss, which in implementation is equivalent to weight the
gradients passed through the gradient reversal layer (GRL)
during training. Take the instance alignment model (i.e.,
Equation (2)) in DA Faster R-CNN [1] for an example, the
instance-level alignment loss with CCR can be written as

LCCR
ins =−

∑
j

dj

[
D log D̂j+(1−D) log(1−D̂j)

]
. (6)

It is worth noting that, we only apply Equation (5) to
weight foreground instances from the target domain, accord-
ing to the predictions of detection head. We keep the weights
for source instances and the background instances from the
target domain unchanged (i.e., dj = 1), as the former have
supervision signals from the source domain, while the latter
are not as important as foreground proposals.

3.4. Integration with DA Faster R-CNN Series

In this work, we take the DA Faster R-CNN [1] and the
state-of-the-art strong-weak aligned Faster R-CNN [28] as
our baseline detectors. In the following, we term them as
“DA-Faster” and “SW-Faster” for simplicity. In fact, other
Domain Adaptive Faster R-CNN detectors [12, 41] may also
be compatible with our framework with minor modifications.

Integration with DA-Faster. Integrating our framework
with DA-Faster [1] is straightforward. We attach an image-
level multi-label classifier to the backbone, by adding a
global averaging pooling layer and a 1×1 convolution layer.
Furthermore, we use our CCR to weight the gradients passed
through the reverse gradient layer (GRL) for instance-level
alignment. The modified overall objective of DA-Faster with
our regularization framework can be written as

L∗DAF =Ldet+LICR+ λ · (Limg+LCCR
ins +Lcst), (7)

where λ is set to 0.1 in [1], and our method does not intro-
duce additional hyper parameters.

Integration with SW-Faster. SW-Faster [28] improves
the strong image-level alignment model of DA-Faster with a
weak global alignment model, and replaces the instance-level
alignment model with a strong local alignment model. Since
our categorical regularization framework is independent of
the specific algorithms for alignment, our ICR module can
be straightly integrated into SW-Faster. Furthermore, we add
an instance-level alignment model, which is the same to that
of DA-Faster, into the pipeline of SW-Faster during training.
This allows us to apply our CCR module to further improve
SW-Faster. The modified overall objective for SW-Faster
with our regularization framework can be written as

L∗SWF =Ldet+LICR+λ′ · (LCCR
ins +Lglobal+Llocal), (8)

where λ′ is set to 1.0, and Lglobal and Llocal denote the
global alignment loss and local alignment loss in [28].

4. Experiments
4.1. Empirical Setup

Datasets. Five public datasets are utilized in our exper-
iments, including Cityscapes [2], Foggy Cityscapes [29],
BDD100k [37], PASCAL VOC [4], and Clipart1k [15].

• Cityscapes [2] focuses on capturing high variability
of outdoor street scenes in common weather conditions
from different cities. It contains 2,975 training images
and 500 validation images with dense pixel-level labels.
We transform the instance segmentation annotations
into bounding boxes for our experiments.
• Foggy Cityscapes [29] is built upon the images in the

Cityscapes dataset [2]. This dataset simulates the foggy
weather using depth maps provided in Cityscapes with
three levels of foggy weather, and thus is suitable to
conduct weather adaptation experiments.
• BDD100k [37] consists of 100k images, with 70k train-

ing images and 10k validation images annotated with
bounding boxes. We extract a subset of BDD100k with
images labeled as daytime, including 36,728 training
and 5,258 validation images. We use this subset for
scene adaptation experiments.
• PASCAL VOC [4] is a real-world dataset containing

20 categories of common objects with bounding box
annotations. Following [28], we employ PASCAL VOC
2007 and 2012 training and validation images (16,551
images in total) for experiments.
• Clipart1k [15] contains 1k clipart images, which

shares the same instance categories with PASCAL VOC
but exhibits a large domain shift. We follow the prac-
tice in [28], and use all images of Clipart1k for both
training (without labels) and test.

Baselines and Comparison Methods. We consider DA-
Faster [1] and the state-of-the-art SW-Faster [28] as our



Table 1. Weather Adaptation: Results on Foggy Cityscapes, using models trained on Cityscapes.
Method person rider car truck bus train mcycle bicycle mAP
Faster R-CNN (Source) 24.4 30.5 32.6 10.8 25.4 9.1 15.2 28.3 22.0
MA-Faster [12] 28.4 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
Selective-Faster [41] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
DA-Faster [1] 28.7 36.5 43.5 19.5 33.1 12.6 24.8 29.1 28.5
DA-Faster-ICR (Ours) 28.7 37.3 43.0 21.9 36.9 9.2 25.9 31.9 29.4
DA-Faster-ICR-CCR (Ours) 29.7 37.3 43.6 20.8 37.3 12.8 25.7 31.7 29.9
SW-Faster [28] 32.3 42.2 47.3 23.7 41.3 27.8 28.3 35.4 34.8
SW-Faster-ICR (Ours) 33.1 44.2 48.8 27.7 44.9 27.9 29.4 36.2 36.5
SW-Faster-ICR-CCR (Ours) 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
Faster R-CNN (Oracle) 36.2 47.7 53.0 34.7 51.9 41.0 36.8 37.8 42.4

Table 2. Scene Adaptation: Results of 7 common categories on the daytime subset of BDD100k, using models trained on Cityscapes.
Method person rider car truck bus train mcycle bicycle mAP
Faster R-CNN (Source) 26.9 22.1 44.7 17.4 16.7 - 17.1 18.8 23.4
DA-Faster [1] 29.4 26.5 44.6 14.3 16.8 - 15.8 20.6 24.0
DA-Faster-ICR (Ours) 29.1 28.6 44.8 14.9 15.8 - 17.1 22.4 24.7
DA-Faster-ICR-CCR (Ours) 29.3 28.4 45.3 17.5 17.1 - 16.8 22.7 25.3
SW-Faster [28] 30.2 29.5 45.7 15.2 18.4 - 17.1 21.2 25.3
SW-Faster-ICR (Ours) 30.9 31.2 45.6 15.9 18.4 - 19.3 23.7 26.4
SW-Faster-ICR-CCR (Ours) 31.4 31.3 46.3 19.5 18.9 - 17.3 23.8 26.9
Faster R-CNN (Oracle) 35.3 33.2 53.9 46.3 46.7 - 25.6 29.3 38.6

baseline methods, and re-implement them for fair compar-
isons. Our re-implementations achieve comparable or even
better accuracies compared to the original papers. When
comparing with other state-of-the-art methods, we report
the results from original papers. Furthermore, we also train
Faster R-CNN [25] only using source images, as well as di-
rectly using annotated target images. We refer to models of
these two settings as “Faster R-CNN (Source)” and “Faster
R-CNN (Oracle)”, respectively.

Implementation Details. Following the default settings
in [1, 28], all training and test images are resized such that
the shorter side has a length of 600 pixels. By default, the
backbone models are initialized using pre-trained weights
of VGG-16 [31] on ImageNet, but for the dissimilar do-
main adaptation experiments from PASCAL VOC [4] to Cli-
part1k [15], we follow the practices in [28] and use ResNet-
101 [11] as the detection backbone. We fine-tune the network
with a learning rate of 1× 10−3 for 50k iterations and then
reduce the learning rate to 1 × 10−4 for another 20k iter-
ations. Each batch is composed of two images, one from
source and another from target. The momentum of 0.9 and
the weight decay of 5 × 10−4 is used for VGG-16 based
detectors, while for ResNet-101 based detectors, we set the
weight decay as 1 × 10−4. In all experiments, we employ
RoIAlign [10] for RoI feature extraction.

4.2. Comparison Results

Weather Adaptation. In real-world scenarios, object de-
tectors may be applied under different weather conditions.
We study the weather adaptation from clear weather to a
foggy environment, using Cityscapes’ training set and Foggy

Cityscapes’ validation set as the source domain and the target
domain, respectively.

Table 1 shows the comparison results. Our categorical
regularization framework can consistently boost the perfor-
mance of DA-Faster and SW-Faster detectors, with 1.4% and
2.6% mAP improvements, respectively. In particular, our
CCR module can greatly improve the detection results for
some difficult categories such as “train”. It clearly verifies
the importance of increasing the weight of hard foreground
instances in target domains for instance-level alignment. It is
worth noting that our categorical regularization framework
helps to reduce the performance gap between the domain
adaptive detector and oracle detector trained with annotated
target images to about 5% mAP.

Scene Adaptation. Scene layout changes frequently occur
in real-life applications of object detection, e.g., automatic
driving from one city to another. To study the effectiveness
of our regularization framework for scene adaptation, we
choose the Cityscapes [2] training set as the source domain
and a subset of BDD100k [37] as the target domain. In
particular, we choose a subset of the BDD100k dataset anno-
tated as daytime to be our target domain and consider the city
scene as the adaptation factor, since there only exists day-
time data in the Cityscapes dataset. We report the detection
results on seven common categories on both datasets.

As shown in Table 2, we observe a significant perfor-
mance gap between the domain adaptive detectors and the
oracle detector, which suggests that scene layout shift is a
challenging factor that hinders the performance of domain
adaptive detection. Even under this difficult setting, our
categorical regularization framework can also improve DA-



Table 3. Dissimilar Domain Adaptation: Results on the Clipart1k dataset, using models trained on the PASCAL VOC training set.
Method aero bike bird boat bottle bus car cat chair cow table dog horsembike person plant sheep sofa train tv mAP
Faster R-CNN (Source) 21.9 42.2 22.9 19.0 30.8 43.1 28.9 10.7 27.4 18.1 13.5 10.3 25.0 50.7 39.0 37.4 6.9 18.1 39.2 34.9 27.0
Kim et al. [16] 28.0 64.5 23.9 19.0 21.9 64.3 43.5 16.4 42.2 25.9 30.5 7.9 25.5 67.6 54.5 36.4 10.3 31.2 57.4 43.5 35.7
DA-Faster [1] 38.0 47.5 27.7 24.8 41.3 41.2 38.2 11.4 36.8 39.7 19.6 12.7 31.9 47.8 55.6 46.3 12.1 25.6 51.1 45.5 34.7
DA-Faster-ICR (Ours) 31.0 53.9 29.2 28.2 41.5 56.6 38.3 8.1 37.4 43.1 22.0 12.4 27.8 49.8 55.0 48.2 11.0 22.7 54.2 46.9 35.9
DA-Faster-ICR-CCR (Ours) 30.2 57.0 30.6 26.2 38.0 57.1 36.1 12.7 36.4 44.8 18.2 14.6 30.0 56.7 56.6 45.9 17.8 25.3 50.5 48.5 36.7
SW-Faster [28] 29.2 53.1 30.2 24.4 41.4 52.5 34.6 14.0 36.3 43.5 17.6 16.6 33.4 78.1 59.1 42.1 15.8 24.9 45.5 43.7 36.8
SW-Faster-ICR (Ours) 25.2 54.0 31.7 23.4 40.3 65.8 35.4 12.1 37.6 48.1 18.6 14.2 31.3 73.6 59.9 46.5 19.5 25.9 46.0 45.6 37.7
SW-Faster-ICR-CCR (Ours) 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3
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Figure 4. Detection examples from three target datasets, from top to bottom: Foggy Cityscapes [29], BDD100k [37], and Clipart1k [15]. Our
categorical regularization framework enables SW-Faster [28] to produce more accurate detection results with large domain shifts.

Faster and SW-Faster by 1.3% and 1.6%, respectively. Simi-
lar to the observations on weather adaptation experiments,
our CCR module can significantly improve the detection
results of some difficult objects such as “truck”.

Dissimilar Domain Adaptation. Both weather adaptation
and scene adaptation can be considered as adaptation be-
tween similar domains. We further show experiments on
the dissimilar domain adaptation from real images to artistic
images. We utilize Pascal VOC [4] as the real source do-
main and the Clipart1k [15] as the target domain. Clipart1k
contains 1k comical images in total, which have the same
20 categories as PASCAL VOC. Following [28], all images
in Clipart1k are used for both training (without labels) and
testing, and thus there is no oracle detector for this dataset.

As shown in Table 3, for dissimilar domain adaptation,
our regularization framework also achieves considerable
improvements over the baseline DA-Faster and SW-Faster
by 2.0% and 1.5% mAP, respectively. Furthermore, our
methods also outperform recent state-of-the-art one-stage
object adaptive detector [16] that employs self training for
domain adaptation.

4.3. Visualization and Analyses

Detection Examples. In Figure 4, we show some de-
tection examples from three target datasets, i.e., Foggy
Cityscapes [29], BDD100k [37] and Clipart1k [15]. Com-
pared to the baseline SW-Faster [28] method, our SW-Faster-
ICR-CCR method produces more accurate detection results
under complex environments and large domain shifts.
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(a) SW-Faster (mAP: 36.8) (b) SW-Faster-ICR (Ours) (mAP: 37.7) (c) SW-Faster-ICR-CCR (Ours) (mAP: 38.3)
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Figure 5. Visualization of image features and instance features with t-SNE [23], where the blue points represent source samples from
PASCAL VOC [4] and the red ones represent target samples from Clipart1k [15]. Top Row: Holistic image features obtained by applying
global average pooling to the output of the detection backbone network. Second Row: Instance features obtained by applying RoIAlign on
the ground truth instances, where we also show three pairs of instances from different domains, and zoom in to the local regions of the most
poorly matched instances. Compared to original SW-Faster [28], our method better aligns both the image-level and instance-level features
on both domains, and enables two dissimilar instances of the same category from different domains to stay close in the feature space.

Feature Visualization. We visualize the image and in-
stance features learned for dissimilar domain adaptation
(from PASCAL VOC [4] to Clipart1k [15]) using t-SNE [23].
For this experiment, we randomly sample 100 ground truth
instances for each category, 50 from the source domain and
50 from the target domain. For some categories that have less
than 50 instances in a certain domain, we sample all instances
in that domain and the same number of instances from the
other domain. The images containing these instances are
sampled for image-level visualization. The image features
are extracted by applying global average pooling on the out-
put of the detection backbone network, while the instance
features are extracted by RoIAlign.

As shown in Figure 5, the blue points represent source
samples and the red ones represent target samples. We also
show three pairs of instances from different domains, and
zoom in to the local regions of the most poorly matched
instances. The dissimilar instance pairs of the same category
from different domains stay closer in the feature space of
our methods. Even for the most poorly matched region,
our method still have better alignment performance than the
baseline SW-Faster method [28]. Furthermore, thanks to the
accurate instance-level alignment, our image-level alignment
performance is also better than the baseline method.

Domain Distance. Besides visualization understanding,
we also calculate a quantitative metric for domain distance,
where both domains are represented by object instances. For
this experiment, we use the same instance samples as the fea-

ture visualization experiment. Specifically, we adopt Earth
Mover’s Distance (EMD) [27] as the metric for measuring
domain distance. With this metric, domain distance com-
puted for SW-Faster [28], SW-Faster-ICR and SW-Faster-
ICR-CCR are 8.84, 8.59, 8.15, respectively.

The consistency between domain distance and model ac-
curacy verifies the motivation of our work. That is, domain
adaptive object detection relies heavily on aligning the cru-
cial local regions and important instances on both domains.
Our regularization framework assists the DA Faster R-CNN
series to achieve this goal.

5. Conclusions

In this work, we presented a categorical regularization
framework upon Domain Adaptive Faster R-CNN series for
improving the adaptive detection performance. Specifically,
we exploited the weakly localization ability of multi-label
classification CNNs and the categorical consistency between
image-level and instance-level predictions, which allows us
to focus on aligning object-related local regions and hard
aligned instances. In experiments, our framework signifi-
cantly boosted the performance of existing Domain Adap-
tive Faster R-CNN detectors and produced state-of-the-art
results on public benchmark datasets. Visualization and anal-
yses can validate the effectiveness of our method. In the
future, we will investigate how to apply our regularization
framework to improve adaptive detectors beyond the Domain
Adaptive Faster R-CNN series.
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