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ABSTRACT

Due to the existence of label noise in web images and the high
memorization capacity of deep neural networks, training deep fine-
grained (FG) models directly through web images tends to have an
inferior recognition ability. In the literature, to alleviate this issue,
loss correction methods try to estimate the noise transition matrix,
but the inevitable false correction would cause severe accumulated
errors. Sample selection methods identify clean (“easy”) samples
based on the fact that small losses can alleviate the accumulated
errors. However, “hard” and mislabeled examples that can both
boost the robustness of FG models are also dropped. To this end,
we propose a certainty-based reusable sample selection and cor-
rection approach, termed as CRSSC, for coping with label noise in
training deep FG models with web images. Our key idea is to addi-
tionally identify and correct reusable samples, and then leverage
them together with clean examples to update the networks. We
demonstrate the superiority of the proposed approach from both
theoretical and experimental perspectives. The source code, models,
and data have been made available at https://github.com/NUST-
Machine-Intelligence-Laboratory/CRSSC.
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Figure 1: (a) Loss correction methods correct losses for all samples
in each mini-batch before back-propagating. (b) Sample selection
methods identify easy samples out of each mini-batch and then
back-propagate using only these easy samples. (c) Our CRSSC is
based on sample selection methods, but proposes to leverage addi-
tionally reusable samples (including “hard” and mislabeled ones)
for boosting the model learning.
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1 INTRODUCTION

In the past few years, labeled image datasets have played a critical
role in computer vision tasks [5, 28, 29, 37, 42]. To distinguish the
subtle differences among fine-grained categories (e.g., birds [44],
airplanes [30], or plants [43]), a large amount of well-labeled images
are typically required. However, labeling objects at the subordinate
level generally requires domain-specific expert knowledge, which
is not always available for a human annotator from crowd-sourcing
platforms like Amazon Mechanical Turk [46, 47].

To reduce the cost of fine-grained annotation, many methods
have been proposed which mainly focus on a semi-supervised learn-
ing paradigm [8, 32, 48, 54]. For example, Xu et al. [48] proposed
to utilize detailed annotations and transfer as much knowledge
as possible from existing strongly supervised datasets to weakly
supervised web images for fine-grained recognition. Niu et al. [32]
proposed a new learning scenario which only required experts
to label a few fine-grained subcategories and can predict all the
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remaining subcategories by virtue of web data. Nevertheless, semi-
supervised methods involve various forms of human intervention
and have relatively limited scalability.

To further reduce the demand of manual annotation, leveraging
web images to train FGVC models has attracted broad attention
[51, 52, 55, 58]. Owing to the error-prone automatic tagging system
or non-expert annotation, web images for fine-grained categories
are usually associated with massive label noise. Therefore, along
with how to find discriminative regions in fine-grained images,
how to handle label noise is another pivotal problem for training
deep FGVC models with web images, which is also the focus of
this paper. Statistical learning has contributed significantly to cope
with label noise, especially in theoretical aspects [53]. However, in
this work, we mainly focus on deep learning based methods.

One typical method, as illustrated in Fig. 1 (a), is using “loss
correction” to correct the loss of training samples based on the
estimated noise transition matrix [33, 34]. The problem is that it
is extremely difficult to get an accurate estimation of the noise
transition matrix, thus inevitable false correction will lead to se-
vere accumulated errors in the training process. Alternatively, as
described in Fig. 1 (b), another popular training schema endeavors
to adopt “sample selection” to identify and remove samples with
label noise, and only use clean samples to update the networks
[14, 18, 31]. Despite promising results that have been achieved in
these approaches, the loss-based selection strategy favors “easy”
examples. “Hard” and mislabeled samples (e.g., a “Laysan Albatross”
image is labeled as “Black Footed Albatross”) are ignored although
they are surprisingly beneficial in making FG models more robust.

As shown in Fig. 1 (c), our idea is to re-utilize informative im-
ages (“hard” and mislabeled examples) by selecting and correcting
employable instances from high-loss samples. To be specific, we
first split samples via the loss-based criterion. Low-loss instances
are deemed to be clean, “easy” examples and their labels remain
unaltered. Then, we perform a further partition on high-loss sam-
ples. In this separation process, we follow a simple but intuitive
observation: for images of irrelevant categories, since they do not
belong to any categories involved in the task, the network tends
to be more confused when predicting their label probabilities. On
the contrary, “hard” and mislabeled ones lean to obtain a relatively
more certain prediction. After hard samples and mislabeled ones
are selected out of high-loss instances, we manage to correct their
labels and then feed them together with clean samples into the net-
work for updating parameters. Extensive experiments and ablation
studies on tasks of fine-grained image categorization demonstrate
the superiority of our proposed approach over existing webly su-
pervised state-of-the-art methods. The primary contributions of
this work can be summarized as follows:

(1) A webly supervised deep model CRSSC is proposed to bridge
the gap between FGVC tasks and numerous web images. Compre-
hensive experiments demonstrate that our approach outperforms
existing state-of-the-art webly supervised methods by a large mar-
gin.

(2) Three types of FG web images (i.e., clean, reusable, and ir-
relevant) which inherently exist in collected web images are suc-
cessfully identified and then separated by CRSSC. Compared with
existing methods, our approach can further leverage reusable sam-
ples to boost the model learning.

(3) A novel label correction method which utilizes the prediction
history of the network is proposed to re-label the reusable samples.
Our experiments show that our label correction method is better
than the existing one which uses the current epoch prediction
results.

2 RELATED WORK

Fine-grained Visual Classification Fine-grained visual classifi-
cation (FGVC) aims to distinguish similar subcategories belonging
to the same basic category. Generally, existing approaches can be
roughly grouped into three categories: 1) strongly supervised meth-
ods, 2) weakly supervised methods, and 3) semi-supervised methods.
Strongly supervised methods tend to require not only image-level
labels but also manually annotated bounding boxes or part anno-
tations [2, 17, 45]. Different from strongly supervised methods,
weakly supervised methods cease to use bounding boxes and part
annotations. Instead, methods in this group only require image-
level labels during training [6, 9-12, 19, 24, 26, 27, 63]. The third
group involves leveraging web images in training the FGVC model
[8, 32, 48]. However, these approaches still contain a certain level
of human intervention, making them not purely web-supervised.
Webly Supervised Learning Since learning directly from web
images requires no human annotation, this learning scenario is be-
coming popular [16, 40, 52, 59-62]. However, training deep FGVC
models directly with web images usually leads to poor performance
due to the existence of label noise and memorization effects [1, 57]
of neural networks. Existing deep methods for overcoming label
noise can be categorized into two sets [39]: 1) loss correction and
2) sample selection. Loss correction methods choose to correct the
loss of training samples based on an estimated noise transition ma-
trix [3, 13, 33-35, 56]. However, due to the difficulty in accurately
estimating the noise transition matrix, accumulated errors induced
by false correction are inevitable [14, 18]. Sample selection methods
identify clean samples out of mini-batches based on their losses and
leverage them to update the network [14, 18, 22, 31, 39]. Neverthe-
less, loss-based selection methods would cause the domination of
easy samples in the training procedure while hard ones get ignored
substantially [3, 25, 36, 39]. Our proposed CRSSC can leverage
additional reusable samples to boost the deep FGVC models.

3 THE PROPOSED APPROACH

3.1 Overview

Fig. 2 presents the architecture of our proposed model. Generally,
we can train a deep FGVC model through a well-labeled dataset
D ={(x3,yi)|1 <i < M}, in which x; is the i-th training sample
and y; is the corresponding ground-truth label. In the conventional
training schema, the model parameters are updated by optimizing
a cross-entropy loss Lcg as follows:

b =0Vl > Lep(FGsfwdl. (1)
|Z)| xi€D

where 0; is the network parameter in the ¢-th training epoch and
f(xi; 6;) is the network output of sample x;.

However, for web images Dy = {(x;, §;)|1 < i < My}, reliable
labels are not always available and they are usually associated with
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Figure 2: The architecture of our proposed model. The deep network feeds forward a mini-batch of web images to predict labels and calculate
losses for each image. Then the drop module sorts and selects small-loss instances as the easy sample set Cg. Furthermore, we take a reuse
module to leverage part of the high-loss instances. Specifically, the reuse module calculates the prediction certainty for each high-loss instance
and selects high-certainty instances as reusable set R. To use samples in R, our model utilizes predictions of previous epochs to re-label
reusable samples. Finally, training instances in Cg U R are leveraged together to promote the optimization of model.

label noise. Then we can divide D« into three subsets:
Dy =NUMUC, )

where N indicates noisy samples, M represents mislabeled ones,
and C stands for the clean set. More specifically, C can be further
separated into easy example set Cg and hard example set Cyy:

C=CgUCy. 3)

It should be noted that, as the training proceeds, hard samples will
gradually become “easy”. Thus, the split of the clean set C changes
in the training process. In this work, we aim to train a robust deep
FGVC model through noisy web data. Our main idea is to properly
select and then re-label informative training samples for boosting
the robustness of the FGVC model. Based on the division described
in Eq. (2) and (3), we regard the union of C and M as informative
training set 7 = C U M, though samples in M have to be corrected
before being fed into the model for further network optimization.

3.2 Drop and Reuse

To optimize the network with only useful knowledge from the
web images, we have to 1) eliminate the negative influence from
samples which belong to N, 2) reduce the misleading impact of
samples belonging to M. Therefore, two key challenges of tackling
label noise in web images D« are: 1) how to select samples which
belong to 7 and prevent the network from learning irrelevant
samples, and 2) how to correct labels of mislabeled ones and reuse
them as part of the informative knowledge.

Memorization effects [1, 57] indicate that, on noisy datasets,
CNN s tend to first learn clean and easy patterns in initial epochs.
As the number of epochs increases, CNNs will eventually overfit on
noisy samples. Our key idea is to drop these noisy instances before
they are memorized. A widely used sample selection strategy is to
separate instances based on losses [14, 18]. These methods typically
select a human-defined proportion (1 — 7) X 100% of low-loss in-
stances as clean samples and directly drop the rest ones. Although
significant improvements have been achieved in these works for
dealing with label noise, the way they separate instances would

lead to the mistaken deletion of samples belonging to C¢y as hard
examples also tend to produce high losses. Moreover, mislabeled
samples would also be dropped by these sample selection methods
due to their high losses.

To tackle drawbacks of these loss-based sample selection meth-
ods, we design a drop and reuse mechanism to further select useful
instances from high-loss samples. Furthermore, for the purpose
of avoiding involving the human-defined noise rate 7, we modify
the conventional loss-based sample selection as in Definition 3.1.
Through adopting our proposed loss-based drop module as well
as the reuse module, we can effectively avoid mistakenly deleting
hard examples and can also make full use of mislabeled samples.

Definition 3.1. In a mini-batch 8B, a sample x € B belongs to Cg
only if its loss Lcg(x, §;0) < ﬁ 2 e8 Lop(xi 93 0)

We use the average loss as the selection threshold for dynamically
separating informative samples from irrelevant ones. Specifically,
due to limited robustness in initial epochs, more samples tend to
have high losses. The selection threshold will be large and CNNs
will learn easy patterns from as many samples as possible. As the
training proceeds, CNNs gain more robust ability and more samples
tend to have low losses. The selection threshold will be small and
more samples will be dropped. In this situation, CNNs will discard
as many samples as possible for ensuring the data learned by CNN
is informative. In this way, our method can reduce the negative
impact of error accumulation.

Why can we distinguish reusable samples from irrelevant
ones? Intuitively, the predicted label probability of a reusable sam-
ple has a completely different pattern from that of an instance which
belongs to an irrelevant category. Samples belonging to NV can be
distinguished based on the confusion of prediction. For example,
as shown in Fig. 3, in a bird classification task, when we feed a bird
image (e.g., hard or mislabeled samples) into the model, the network
tends to produce a certain prediction although it may have a high
loss due to incorrect labeling. However, if we feed an irrelevant
sample (e.g., a bird distribution map), which apparently belongs to
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Figure 3: The easy, hard, mislabeled, and irrelevant web images
collected through query “California Gull”, in which hard examples
and mislabeled ones can be leveraged to boost the robustness of the
deep FGVC model.

N in this task, the network would get confused and thus produce
an uncertain prediction. Inspired by this observation, we formalize
a new criterion to further select reusable samples from the ones
with high-loss:

Definition 3.2. In a mini-batch 8B, a sample x € 8N Cg™! is
reusable if its prediction certainty V (x; 6) satisfies the condition:

V(x:0) 2 1gac1 Zxyesnes V(3 0).

[4] demonstrated that the prediction variance can be used to mea-
sure the uncertainty of each sample in classification tasks. There-
fore, in order to quantify the certainty of prediction, we simply
adopt the standard deviation (the square root of the variance) of
predicted probabilities for sample x:

K
CUEAE 2P 0)= @
where K is the number of categories, P;(x; 0) is the softmax result
of f(x;0;), which is deemed as the (pseudo) predicted probability
of sample x belonging to the j-th category, and y is the mean value
of predicted probabilities. Since 25,(:1 Pj(x;0) = 1, we can easily
rewrite Eq. (4) as:

K
V(x;0) = %{ 3 Pixi0)? - % )
i=1

The standard deviation of predicted probabilities is consistent with

prediction certainty. From Eq. (5) and the constraint of Zf: 1 Pj(x;0) =

1, we can have the following observations. 1) The standard deviation
of predicted probabilities V (x; 0) is bounded. 2) V (x; 6) gets larger
when one label’s probability (e.g., Py(x, 8)) gets notably higher. 3)
If Py(x, 0) is significantly higher than others’ value, the network is
more certain about its prediction on this sample. V (x; 0) reaches

VK-1

its maximum value ~—— when

) _]J L j=gq

EIqe{l,Z,S,...,K},PJ(x,@)—{ 0o, j#q (6)
In this case, the prediction certainty also reaches its maximum. On
the other hand, V(x; 0) gets smaller when all labels’ probabilities
get closer to each other. In this case, the prediction certainty also

drops. This observation is consistent with the intuition. It results
from a fact that if the network produces a prediction in which each
label’s probability is close to others, it means the network is highly
confused about this sample. V (x; 0) reaches its minimum value 0
when

Vi€ (1,23 ...K},Pj(x,0) = 1/K. @)

In this situation, the model fails as all labels are predicted equally.

3.3 Label Correction

The reusable samples selected by the certainty-based criterion de-
fined in Definition 3.2 are assembled into a sample set R. To be
specific, R includes two types of images: 1) mislabeled instances
and 2) hard examples that have correct labels.

In order to leverage these informative samples for training, their
noisy labels have to be corrected. [49] proposed to use the cur-
rent prediction to replace original labels. Nevertheless, due to a
lack of robustness for CNN predictions on noisy datasets, using
a single prediction to relabel mislabeled instances may result in
error accumulation. Therefore, different from [49], we propose to
correct noisy labels using the prediction history. This results from
a fact that averaging distributions over classifier iterations can in-
crease stability and reduce the influence of misleading predictions.
Empirical results show that our label correction method works
better.

Specifically, we record the label prediction as well as its corre-
sponding predicted probability for each training sample x € Dqy.
A history list Hy(x) is defined as follows:

Hy(x) = {(h—i(x), pr—i(x))|1 <i < m,x € Dy}, (8)

in which A (x) is the label prediction of the sample x in the ¢-th
epoch, and p;(x) is its corresponding predicted probability. The his-
tory list Hy (x) is maintained to memorize each sample’s prediction
of the previous m epochs.

When calculating forward losses, we correct samples belonging
to R by replacing their original labels with corrected ones defined
in Definition 3.3. For samples belonging to Cg, we directly use their
original labels. The leftover samples are regarded as irrelevant data
and are excluded for robust training.

Definition 3.3. For x € R, its corrected label y°’" is the label
prediction who has the highest accumulated probability in the
previous m epochs:

m

Y’ = arg max Z
<j< . .
VSI<K it by (x)=)

pr-i(x). ©)

Why don’t we need to separate mislabeled and hard ex-
amples? As stated above, both mislabeled samples and hard ones
are included in R = Cgy U M. It is difficult to make a reliable split
on R to distinguish hard samples and mislabeled ones. As a result,
the label correction might also relabel hard samples using their
previous predictions. However, both hard examples and mislabeled
ones tend to produce consistent predictions on their true labels,
though their predicted probabilities might be lower than those of
easy samples. Therefore, using prediction history to relabel hard
samples would not compromise the model.



Algorithm 1: The proposed CRSSC algorithm

Input: Initialized network f, warm-up epochs T,,, maximum
epoch Thax, and training set Dqy.

for T =1,2,..., Tax do

Randomly draw a mini-batch 8 from Dqy .

if T,y < T < Thax then
Construct B¢, = 8 N Cg through Definition 3.1.
Construct Bg = B8 N R by Definition 3.2.
Relabel samples in B with Definition 3.3.
Update the network f with Eq. (10).

else

| Update the network f according to Eq. (1).
end

end
Output: Updated network f.

3.4 Summary of CRSSC

Based on the Definition 3.2 and 3.3, we can reformulate the network
update function in Eq. (1) as

1
01 =0 =Vl > Lep(f(xs60).y)]  (10)
ICs UR|
x;ECsUR
where
. Ui xi € Cg;
Yi = lgorr’ x;i € R. (11)

Here, to further enhance the generalization performance of CRSSC,
we adopt the Label Smoothing Regularization [41] when calculating
the cross-entropy loss. That is to say, for input image x;, we adopt
the following smoothed ground-truth probability {g;|1 < j < K}
in the loss calculation:

| 1-¢ i=vy;
qJ { e/(K-1), j#y; 12
For CRSSC, we first train the network on whole training set
in a conventional manner to warm up the network. The reason
is that deep CNN has memorization effects [1, 57] and will learn
clean and easy patterns in the initial epochs. With this warm-up
step, CNN will get equipped with an initial learning capacity. Then,
we perform a two-step sample selection in each mini-batch B: 1)
select low-loss instances from B using the criterion defined in the
Definition 3.1, and 2) identify reusable samples, which have high
prediction certainty in high-loss instances based on the Defini-
tion 3.2. Subsequently, reusable samples are relabeled based on the
Definition 3.3. Finally, parameters of the network are updated using
the clean, easy sample set B, along with the reusable sample
set Bg. The detailed process of our proposed CRSSC is shown in
Algorithm 1.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics

Datasets: We evaluate our approach on three popular benchmark
fine-grained datasets: CUB200-2011 [44], FGVC-Aircraft [30] and
Stanford Cars [20].

Evaluation Metric: Average Classification Accuracy (ACA) is
taken as the default evaluation metric.

4.2 Implementation Details

Data preparation: To collect the web training set, we follow [32]
and retrieve images from image search engine using the category
labels in benchmark datasets. For ensuring no overlaps between
the training and testing set, we additionally perform a PCA near-
duplicate removal [64] between collected web images and test im-
ages in the benchmark datasets. Finally, we regard filtered web im-
ages (13503 for FGVC-Aircraft, 18388 for CUB200-2011, and 21448
for Stanford Cars) as the training set and adopt testing images from
original benchmark datasets.

CRSSC learning: We use a pre-trained model (e.g., VGG-16 [38])
as the basic CNN network. The number of warm-up epochs T,
is tested in {5, 8,10, 15,20}. The history list length limit [ is se-
lected from {0, 5, 10, 15, 20}. The LSR parameter € is chosen from
{0.0,0.2,0.5,0.6,0.8}. During the network optimization, we adopt a
SGD optimizer with momentum = 0.9. The learning rate, batch size,
and weight decay are set to be 0.01, 32, and 0.0003, respectively.

4.3 Baseline Methods

Strongly supervised methods require bounding boxes or part
annotations during training. This set of baselines includes Part-
Stacked [17], Coarse-to-fine [50], HSnet [23], and Mask-CNN [45].
Weakly supervised methods require image-level labels, includ-
ing Parts Model [12], iSQRT-COV [24], TASN [63], and DCL [6].
Semi-supervised methods leverage web images but remain in-
volving human intervention, including Cui et al. [8], Xu et al. [48],
Niu et al. [32], and Cui et al. [7]. For strongly, weakly, and semi-
supervised methods, we report the performances in their papers.
Webly supervised methods directly leverage web images with-
out human involvement, including VGG-16 [38], ResNet-50 [15],
B-CNN [27], Decoupling [31] and Co-teaching [14]. To be fair, we
use the same backbone B-CNN [27] in Decoupling, Co-teaching and
our CRSSC. For basic networks VGG-16, ResNet-50, and B-CNN,
we fine-tune them with noisy web images.

4.4 Experimental Results

Table 1 presents the comparison of ACA results on three benchmark
datasets. It should be noted that the results of webly methods are
all produced from experiments using exactly the same training data.
By observing Table 1, we can notice that our approach performs
better than other webly supervised methods on all three benchmark
datasets. Compared with basic networks VGG-16, ResNet-50, and
B-CNN, our CRSSC (with backbone B-CNN) can effectively alleviate
the influence of label noise in the process of model training. Com-
pared with state-of-the-art webly supervised methods Decoupling
and Co-teaching, our approach can additionally identify reusable
samples and salvage them by performing a label correction. Thus,
our CRSSC can efficiently explore more useful samples to boost the
robustness of the FGVC model.

5 ABLATION STUDIES

5.1 Training Loss and Prediction Certainty

The prediction loss and certainty are two fundamental criteria
for selecting informative samples. To investigate the distribution
of prediction loss and certainty for clean, reusable, and dropped



Table 1: The ACA (%) results on three benchmark datasets. BBox/Part means bounding box or part annotation is required during training,.
Training set means the training data is manually labeled (anno.) or collected from the web (web). iNat refers to the iNat2017 dataset.

Perf
Types Methods BBox/Part | Training Set - eriormance
FGVC-Aircraft [30] | CUB200-2011 [44] | Stanford Cars [20]
Part-Stacked [17] v anno. - 76.6 -
Coarse-to-fine [50] v anno. 87.7 82.9 -
Strongly

HSnet [23] v anno. - 87.5 93.9

Mask-CNN [45] v anno. - 85.7 -
iSQRT-COV [24] anno. 914 88.7 93.3

Weakly Parts Model [12] anno. - 90.4 -
TASN [63] anno. - 89.1 93.8
DCL [6] anno. 93.0 87.8 94.5

Cui et al. [8] anno.+web - 89.7 -

. Xu et al. [48] anno.+web - 84.6 -

Semi .

Niu et al. [32] anno.+web - 76.5 -
Cui et al. [7] anno.+iNat 90.7 89.3 93.5
VGG-16 [38] web 68.4 66.3 61.6
ResNet-50 [15] web 60.4 64.4 60.6
B-CNN [27] web 64.3 66.6 67.4

Webly .

Decoupling [31] web 75.9 70.6 75.0
Co-teaching [14] web 72.8 73.9 73.1
CRSSC web 76.5 77.4 76.6

Table 2: The ACA (%) comparison by using different backbones.

Backbone Method Aircraft CUB200 Cars
Standard 68.4 66.3 61.6
VGG-16 andar
CRSSC 78.3 77.8 81.6
ResNet-18 Standard 53.7 59.3 55.6
CRSSC 75.6 76.8 84.2
R 4.4 K
ResNet-50 Standard 60.8 6 60.6
CRSSC 82.5 81.3 87.7
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Figure 4: The prediction loss (left) and certainty (right) of clean,
reusable, and dropped samples as training progresses. The value on
the individual image is plotted in the dotted line and the average
value of each group is plotted in the solid line.

samples in training process, we select 30 instances in total, 10
images for each group (clean, reused, and dropped) and plot their
prediction losses as well as prediction certainties. The experimental
results are shown in Fig. 4.

By observing Fig. 4, we can find that as the network training
forwards, the losses of clean samples decrease sharply while their
prediction certainties increase steadily. Regarding reusable sam-
ples, although some of them have a fairly higher loss than clean
ones, their prediction certainties increase remarkably as training
progresses. The explanation is that reusable samples are either hard

Table 3: The ACA (%) comparison by using different steps.

Model ACA (%)
ResNet-18 59.3
+ Def. 3.1 69.7
+ Def. 3.1 + Def. 3.2 69.9
+ Def. 3.1 + Def. 3.2 + Def. 3.3 73.4
+ Def. 3.1 + Def. 3.2 + Def. 3.3 + LSR (CRSSC) 75.6
+ Fine-tuned CRSSC 76.8
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Figure 5: The sample selection overlap of dropped samples (left)
and clean ones (right) between each epoch and its previous 1, 2, 3,
5, 8, 10 epochs. The comparison starts after the warm-up epochs,
i.e., the blue line starts from the 7th epoch.

or mislabeled instances, thus tend to produce confident predictions
consistently. The high loss and low prediction certainty of dropped
samples demonstrate that our CRSSC can successfully identify and
drop these irrelevant samples.

5.2 Overlap of Identified Samples in Epochs

To further investigate the robustness of our sample selection strat-
egy, we explore the overlap ratio of selected samples between adja-
cent epochs. To this end, we record the sample selection overlap



Table 4: The ACA (%) results of combining CRSSC with Co-teaching
in same and different backbones on CUB200-2011.

Dataset Net 1 ACA 1 Net 2 ACA 2
ResNet-18 77.4 ResNet-18 78.7
ResNet-18 78.8 ResNet-50 81.9
ResNet-50 81.9 ResNet-50 81.0

CUB200-2011
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Figure 6: The variations of clean, reusable, and dropped samples
during the training processes (left). The drop rate among sorted
mini-batches in one epoch (right).

between each epoch and its previous 1, 2, 3, 5, 8, 10 epochs. Let
C' represent the selected dropped (clean) sample set in the i-th
epoch, Fig. 5 presents the sample selection overlap of dropped
(clean) samples among the current i-th epoch and its previous ¢
epochs (Fti =CinCci1n...nC*1 N ¢t From Fig. 5, we can
observe that both dropped and clean samples grow steadily and
finally converge to a high level, which firmly proves the consistency
and robustness of our sample selection strategy.

5.3 Influence of Different Backbones

It is well known that the choice of CNN architectures has a critical
impact on object recognition performance. To investigate the in-
fluence of different backbones, we conduct experiments by using
different basic networks VGG-16 [38], ResNet-18, and ResNet-50
[15]. The experimental results are shown in Table 2.

From Table 2, we can have the following observations: 1) with
a much deeper backbone network like ResNet-50, our CRSSC can
yield significantly better performance than ResNet-18 and VGG-16.
2) When training a basic network directly with noisy web images,
the basic network with higher capacity may produce a worse result.
However, by adopting our CRSSC, we can make full use of the
learning capacity of basic networks via properly selecting reusable
samples and correcting their labels. Compared with the standard
network, the improvement of performance demonstrates the supe-
riority of our proposed approach.

5.4 Influence of Different Steps

In this subsection, we investigate the influence of various steps on
a basic network like ResNet-18. We first add the Def. 3.1 on the
ResNet-18 network to construct a baseline. We then add the Def. 3.1
and 3.2 to construct another baseline. For the third baseline, we
add all the Def. 3.1, 3.2, and 3.3 to the ResNet-18. For the fourth
baseline, we add the label smoothing technique to complete our
CRSSC method. Finally, we present a fine-tuned CRSSC model as the
last baseline. The experimental results on the CUB200-2011 dataset

Table 5: The ACA (%) results of our CRSSC training on the combined
datasets (web+labeled).

Backbone FGVC Aircraft CUB200 Stanford Cars
VGG-16 88.4 85.7 92.4

ResNet-18 88.4 86.8 92.4
ResNet-50 93.4 87.7 94.0
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Figure 7: The parameter sensitivities of warm-up epochs T,, (left),
history list length / (middle), and the LSR smoothing level € (right)
by using different backbones VGG-16 and ResNet-50.

are summarized in Table 3. By observing Table 3, we can find that
the fine-tuned CRSSC framework obtains the best performance.

5.5 Combining with Co-teaching

Our proposed method is flexible with regard to combining with
other techniques since it only involves sample selection and relabel-
ing. Here, we combine our CRSSC with a state-of-the-art method
Co-teaching [14] for further performance improvement. Following
the setup in Co-teaching, we maintain two networks simultane-
ously. In each mini-batch, each network constructs its own Be, and
Bg and subsequently feeds them into its peer network for further
updating. Different from Co-teaching which only trains model with
clean, easy samples, the combined method additionally leverages
hard and mislabeled samples to promote the network optimiza-
tion. Table 4 demonstrates the ACA results of combining CRSSC
with Co-teaching in same and different backbones on CUB200-2011
dataset. Compared with the naive CRSSC (presented in Table 2), we
can observe that great improvement has been achieved in Table 4.

5.6 Combining Web and Labeled Data

One of the roadblocks that limit the performance of fine-grained
visual classification is the lack of enough labeled training data.
The widely-used FGVC benchmark datasets (e.g., FGVC-Aircraft,
CUB200-2011, and Stanford Cars) all suffer from limited training
data, which severely prevented the FGVC task from being suffi-
ciently benefited from the high learning capability of deep CNN.
Therefore, employing web images as a supplement to existing fine-
grained datasets also attracts considerable attention in recent years.
Following the semi-supervised manner, we leverage collected web
images as data augmentation to the labeled training data for train-
ing deep FGVC model. The experimental results of our CRSSC
training on the combined data are shown in Table 5.

5.7 Trend of Samples in Training

We present the ratio variations of identified clean, reusable, and
dropped samples during the training processes in Fig. 6 (left). From
Fig. 6 (left), we can notice that the ratio of clean samples increases
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Figure 8: The prediction accuracy (%) of the baseline model (left)
and our CRSSC model (right) during the process of training. The
“Mislabeled Samples” curve (blue) represents the prediction accu-
racy with regard to corrupted labels while the “Mislabeled Samples
(with correct label)” curve (cyan) denotes the prediction accuracy
with regard to ground-truth labels.

steadily until convergence while training progresses. As the train-
ing continues, the previous hard examples will gradually become
“easy” for our model. On the contrary, as the network training
proceeds, the certainty-based criterion will gradually reduce the
mistaken dropping, thus leading to a firm decrease in the ratio of
dropped samples until convergences to the ground-truth noise rate.
Additionally, since hard examples get fewer with the growth of net-
work capability, the ratio of reusable samples also decreases, until
only mislabeled examples are left. The final convergence of three
groups demonstrates the stability and robustness of our sample
selection strategy. Fig. 6 (right) shows the drop rate among sorted
mini-batches in one epoch. From Fig. 6 (right), we can find the
imbalance of dropped sample ratios across each mini-batch, which
proves the necessity of avoiding using a predefined drop rate.

5.8 Parameters in Proposed Approach

For the parameters analysis, we concern three parameters, including
1) the number of warm-up epochs T, 2) the length of history list
I, and 3) the LSR smoothing level €. Fig. 7 gives the results on
CUB200-2011 dataset.

From Fig. 7 (left), we can observe that CRSSC is relatively stable
when varying T,, by fixing other two parameters. Both cases achieve
the best performance when T,, is selected in [5, 8] and we select
T,y = 5 as the default option. The length of history list affects
the precision of label correction. Intuitively, a higher value of |
may benefit the label correction. However, the relabeling could
also be misled due to poor predictions of early epochs. From Fig. 7
(middle), we notice that the best performance can be obtained when
Il € [5,10], we select | = 5 as the default option. It should be noted
that when I = 0, this means that we use the prediction label of
the current epoch instead of that with the highest accumulated
probability in the previous m epochs.

The smoothing level has an influence on the generalization abil-
ity. Compared with the case in which LSR is not leveraged (i.e. € = 0),
from Fig.7 (right), we can find that the classification accuracy in-
creases considerably when adopting a proper level of label smooth-
ing. When € € [0.2,0.6), the performance is fairly robust. However,
as the e gets larger than 0.6, the performance starts to decrease.
This probably results from the fact that too large € leads to a lack
of proper ground-truth guidance in the training process.
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Figure 9: The samples selection accuracy (%) (left) and the sample

relabeling accuracy (%) (right) during the training process.

5.9 Further Studies on Noisy-CIFAR100

To further explore the effectiveness of our approach, we follow
Co-teaching [14] and generate a synthetic dataset based on CI-
FAR100 [21] for further study. We first regard the last 20 categories
of CIFAR100 as the irrelevant categories. Then we randomly select
20% of the remaining training samples and corrupt their labels to
simulate mislabeled data. We named this synthetic dataset as Noisy-
CIFAR100.

Prediction Accuracy for Different Samples: As the memoriza-
tion effects [1, 57] indicated, CNN tends to fit clean samples in
initial epochs and will eventually fit noise data (i.e., irrelevant sam-
ples, and mislabeled ones). Fig. 8 presents the prediction accuracy
of baseline model ResNet-18 (left) and our CRSSC (right) model. By
observing Fig. 8 (left), we can observe that, while the prediction
accuracy on clean training samples grows steadily in the training
process, CNN eventually fits noisy training data and degrades the
classification ability of the final model. From Fig. 8 (right), we can
notice that, by using our CRSSC, the over-fitting to noise data are
effectively suppressed. Besides, by using our relabeling strategy,
mislabeled samples can be better learned and finally contribute to
boosting the model classification ability.

Samples Selection and Relabeling Accuracy: Fig. 9 (left) shows
the samples selection accuracy of our approach and (right) presents
the samples relabeling accuracy. From Fig. 9 (left), we can find that
the samples selection accuracy (including both reused and dropped
samples) grows steadily as the training proceeds. In addition, the
samples relabeling accuracy also has a steady increases in training.

6 CONCLUSION

In this work, we studied the problem of training FGVC models
directly with noisy web images. Accordingly, we proposed a simple
yet effective approach, termed as CRSSC, which trained a deep
neural network using additionally selected hard and mislabeled
samples to boost the robustness of the model. Comprehensive ex-
periments showed that our approach has achieved state-of-the-art
performance, compared with existing webly supervised methods.
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