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Abstract

We propose Equiangular Basis Vectors (EBVs) for clas-
sification tasks. In deep neural networks, models usually
end with a k-way fully connected layer with softmax to
handle different classification tasks. The learning objec-
tive of these methods can be summarized as mapping the
learned feature representations to the samples’ label space.
While in metric learning approaches, the main objective is
to learn a transformation function that maps training data
points from the original space to a new space where simi-
lar points are closer while dissimilar points become farther
apart. Different from previous methods, our EBVs generate
normalized vector embeddings as “predefined classifiers”
which are required to not only be with the equal status be-
tween each other, but also be as orthogonal as possible. By
minimizing the spherical distance of the embedding of an in-
put between its categorical EBV in training, the predictions
can be obtained by identifying the categorical EBV with
the smallest distance during inference. Various experiments
on the ImageNet-1K dataset and other downstream tasks
demonstrate that our method outperforms the general fully
connected classifier while it does not introduce huge addi-
tional computation compared with classical metric learning
methods. Our EBVs won the first place in the 2022 DIGIX
Global AI Challenge, and our code is open-source and avail-
able at https://github.com/NJUST-VIPGroup/
Equiangular-Basis-Vectors.

1. Introduction
The pattern classification field developed around the end

of the twentieth century aims to deal with the specific prob-

lem of assigning input signals to two or more classes [56].

In recent years, deep learning models have brought break-

throughs in processing image, video, audio, text, and other
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Figure 1. Comparisons between typical classification paradigms

and our proposed Equiangular Basis Vectors (EBVs). (a) A general

classifier ends with k-way fully connected layers with softmax.

When adding more categories, the trainable parameters of the classi-

fier grow linearly. (b) Taking triplet embedding [60] as an example

of classical metric learning methods, the complexity is O(M3)
when given M images and it will grows to O((M +m′)3) when

adding a new category with m′ images. (c) Our proposed EBVs.

EBVs predefine fixed normalized vector embeddings for different

categories and these embeddings will not be changed during the

training stage. The trainable parameters of the network will not

be changed with the growth of the number of categories while the

complexity only grows from O(M) to O(M +m′).

data [10, 19, 27, 58]. Aided by the rapid gains in hardware,

deep learning methods today can easily overfit one million

images [9] and easily overcomes the obstacle to the qual-

ity of handcrafted features in previous pattern classification

tasks. Many approaches based on deep learning spring up

like mushrooms and had been used to solve classification

problems in various scenarios and settings such as remote

sensing [38], few-shot [52], long-tailed [72], etc.



Figure 1 illustrates two typical classification paradigms.

Nowadays, a large amount of deep learning methods [38,72]

adopt a trainable fully connected layer with softmax as the

classifier. However, since the number of categories is fixed,

the trainable parameters of the classifier rise as the number

of categories becomes larger. For example, the memory

consumption of a fully connected layer W ∈ R
d×N linearly

scales up with the growth of the category number N and so

is the cost to compute the matrix multiplication between the

fully connected layer and the d-dimensional features. While

some other methods based on classical metric learning [23,

30, 60–62] have to consider all the training samples and

design positive/negative pairs then optimize a class center

for each category, which requires a significant amount of

extra computation for large-scale datasets, especially for

those pre-training tasks.

In this paper, we propose Equiangular Basis Vectors

(EBVs) to replace the fully connected layer associated with

softmax within classification tasks in deep neural net-

works. EBVs predefine fixed normalized vector embeddings

with equal status (equal angles) which will not be changed

during the training stage. Specifically, EBVs pre-set a d-

dimensional unit hypersphere, and for each category in the

classification task, EBVs assign the category a d-dimensional

normalized embedding on the surface of the hypersphere and

we term these embedding as basis vectors. The spherical

distance of each basis vector pair satisfies an artificially

made rule to make the relationship between any two vec-

tors as close to orthogonal as possible. In order to keep the

trainable parameters of the deep neural networks constant

with the growth of the category number N , we then propose

the definition of EBVs based on Tammes Problem [55] and

Equiangular Lines [57] in Section 3.2.

The learning objective of each category in our proposed

EBVs is also different from previous classification methods.

Compared with deep models that end with a fully connected

layer to handle the classification tasks [19, 27], the meaning

of the parameter weights within the fully connected layer in

EBVs is not the relevance of a feature representation to a par-

ticular category but a fixed matrix which embed feature rep-

resentations to a new space. Also, compared with regression

methods [34,51], EBVs do not need to learn the unified repre-

sentations for different categories and optimize the distance

between the representation of input images and category cen-

ters, which helps reduce the computational consumption for

the extra unified representations learning. In contrast to clas-

sical metric learning approaches [14, 23, 50, 61], our EBVs

do not need to measure the similarity among different train-

ing samples and constrain distance between each category,

which will introduce a large amount of computational con-

sumption for large-scale datasets. In our proposed method,

the representations of different images learned by EBVs will

be embedded into a normalized hypersphere and the learning

objective is altered to minimize the spherical distance of

the learned representations with different predefined basis

vectors. In addition, the spherical distance between each

predefined basis vector is carefully constrained so that there

is no need to spend extra cost in the optimization of these

basis vectors. To quantitatively prove both the effectiveness

and efficiency of our proposed EBVs, we evaluate EBVs

on diverse computer vision tasks with large-scale datasets,

including classification on ImageNet-1K, object detection

on COCO, as well as semantic segmentation on ADE20K.

2. Related work
2.1. Deep networks for image classification

Image classification is the task of categorizing images

into one of several predefined classes, which has been a fun-

damental problem in computer vision for a long time [4, 36].

It also forms the basis for many other computer vision tasks,

e.g., object detection [37], localization [28] and segmen-

tation [39]. To solve the image classification problem, a

dual-stage approach was used before the rise of deep learn-

ing. Specifically, handcrafted features were first extracted

from images using feature descriptors. Then, a trainable

classifier is adopted to perform the classification task with

these input features [44]. The major hindrance of this ap-

proach was that the accuracy of the classification task was

profoundly dependent on the design of the feature extraction

stage, and this usually proved to be a formidable task [29].

In recent years, deep learning models that exploit multi-

ple layers of nonlinear information processing, for feature

extraction and transformation as well as for pattern analy-

sis and classification, have been shown to overcome these

challenges [44]. With the holding of ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) [49], a growing

number of deep networks demonstrate superior classification

performance [10, 15, 19, 27, 32, 33, 42]. Among them, Deep

Convolutional Neural Networks (DCNNs) and Vision Trans-

formers (ViTs) [10] have become the leading architectures

for most image classification task in recent years. In addi-

tion, selected representative examples of other improvement

attempts related to the following different aspects: network

architecture, nonlinear activation functions, supervision com-

ponents, regularization mechanisms and optimization tech-

niques. Our proposed Equiangular Basis Vectors (EBVs) are

different from these aspects as we do not change the overall

architecture and training techniques but the optimization ob-

jectives for classification since we preliminary design fixed

normalized vector embeddings for each predefined category.

2.2. Learning objectives

Besides traditional classifiers, machine learning or deep

learning methods such as clustering [1, 45], regression [34,

51], metric learning [14, 50, 61], sparse learning [48, 67] can



be used to handle the classification tasks while the learning

objectives of these methods vary considerably. In this sec-

tion, we only discuss the learning objective of our EBVs

with two prominent training paradigms of deep learning

for the classification tasks, i.e., general k-way classification

layers [27] and classical deep metric learning [3, 66].

Regarding deep learning for classification, the k-way clas-

sification layer (always associated with softmax) is the

most popular used approach for training deep models. It

employs a single linear layer or multiple non-linear layers to

map the learned deep representations to the semantic cate-

gories in the label space. The corresponding learning objec-

tive is minimizing the losses (e.g., the cross-entropy loss [8])

between the mapped categorical signals (aka. predictions)

with the ground truth categories. Compared with that, the

learning objective of our EBVs is to make the vectorized

embedding of input as close as possible to its categorical

equiangular basis vector correspondingly.

The learning objective of classical deep metric learning

seems similar to ours. However, there are several crucial

and fundamental differences. Firstly, although deep metric

learning minimizes the distances between sample vectors

belonging to the same category and meanwhile maximizes

the distances between samples from different categories,

all these sample vectors are constantly changing during the

model training process. But, in our method, the equiangular

basis vectors corresponding to the categories are predefined,

i.e., they are fixed. More importantly, these equiangular ba-

sis vectors in the spherical space are forced to be with equal

status and be as orthogonal as possible to each other, which

could contribute to strong model discriminative ability and

good classification accuracy. In practice, both with equal

status and being orthogonal of vectors are strict conditions

w.r.t. optimization. Thus, our EBVs predefine the satisfied

categorical basis vectors and our learning objective focuses

on only optimizing the learned feature representations to pre-

vent the model from being unable to converge (when EBVs

can also change under such strict conditions). Secondly,

the learning objective of deep metric learning is upon mas-

sive training samples, while our learning objective is for the

training sample and its fixed categorical vectorized embed-

ding, i.e., EBV. It could bring the computational economy,

especially for the large-scale training data scenario, cf. Sec-

tion 3.5. In addition, compared with several specific metric

learning approaches, e.g., the center loss [62], the prototypi-

cal network [52] and the nearest class mean approach [40],

our method is still quite distant from them. Specifically,

the basic idea of these works is to construct the “center” of

samples belonging to a category to represent its semantics

and then leverage the centers to optimize sample distances

for classification. Similarly, since these categorical centers

are always changing during training, these approaches will

also encounter the same problems as aforementioned.

3. Methodology

3.1. Preliminaries

The proposed Equiangular Basis Vectors (EBVs) are

based on the study with regard to Equiangular Lines [21,

22, 57] and the Tammes Problem [55].

A set of lines passing through the origin in R
d(d ∈

{2, 3, 4, 5, . . .}) is called equiangular if they are pairwise

separated by the same angle. The study of equiangular lines

was initiated by Haantjes [22] and it plays an important

role in the coding theory [53] and quantum information the-

ory [46].

The problem of how to determine the maximum number

N(d) of equiangular lines in a given dimension d was for-

mally posed by Van Lint and Seidel [57] and has gained a ma-

jor breakthrough by Jiang et al. [21] last year — Fix 0 < α <
1, let Nα(d) denote the maximum number of lines through

the origin in R
d with pairwise common angle arccosα, let

k denote the minimum number (if it exists) of vertices in a

graph whose adjacency matrix has spectral radius exactly

(1−α)/(2α). If k < ∞, then Nα(d) = �k(d−1)/(k−1)�
for all sufficiently large d, and otherwise Nα(d) = d+ o(d).
In particular, N1/(2k−1)(d) = �k(d− 1)/(k − 1)� for every

integer k ≥ 2 and all sufficiently large d [21].

In simple terms, with a fixed common angle, the maxi-

mum number N(d) of equiangular lines is linearly correlated

with the dimension d as d → ∞ while there is still no pre-

cise lower bound for N(d) with smaller values of d [13].

Therefore, we further refer to the Tammes Problem. Let an
be the maximal number with the property that one can place

on a unit hypersphere Sd ∈ R
d(d ∈ {3, 4, 5, . . .}) n points

so that the spherical distance of any two points is at least an.

The problem of finding an together with the corresponding

arrangement of each point is known as the Tammes Prob-

lem [55] or the optimal spherical code [12]. It is easy to find

that the number of these points will be close to infinity as an
tends to zero.

3.2. Definition of Equiangular Basis Vectors

In order to predefine fixed d-dimensional embeddings for

as many categories as possible but still keep these embed-

dings at a distance from each other on a unit hypersphere

Sd ∈ R
d, we therefore propose Equiangular Basis Vec-

tors (EBVs). Specifically, we fix 0 ≤ α < 1 and let Nα(d)
denote the range of values for the number of coordinate vec-

tors in Rd with the pairwise common angle between arccosα
and arccos−α. The problem of our proposed EBVs is to

calculate the coordinates of each vector in the vector set W
when given fixed α, d and N ∈ Nα(d) if possible, i.e., solve

the set W which satisfies:

∀wi,wj ∈ W, i 
= j, −α ≤ wi ·wj

‖wi‖ ‖wj‖ ≤ α , (1)



where wi ∈ R
d, card(W) = N and ‖·‖ denotes the Eu-

clidean norm. Let φ denote the spherical distance function,

which can also be replaced by the cosine similarity function.

EBVs produce a distribution over classes for a query point

v ∈ R
d based on softmax over cosine similarity to the N

fixed coordinate vectors in the embedding space:

p(y = k|v) = exp(−φ(v,wk))∑
k′ exp(−φ(v,wk′))

, (2)

where y = k ∈ {1, 2, . . . , N} denotes the corresponding

coordinate vector, which can also be seen as the correspond-

ing label. While k′ represents the associated basis vectors

in W . Relations between α, d and N are described in the

supplementary materials. With such a set W , the maximum

number of categories it can handle is N . Additionally, train-

ing with any category number less than N , it is sufficient

to randomly select any of the same numbers of coordinate

vectors in W , since these vectors are exactly equivalent.

3.3. How to generate EBVs?

The basic idea of our Equiangular Basis Vectors (EBVs)

is to generate fixed normalized vector embeddings with equal

status (equal angles) as “predefined classifiers” for all the

relevant categories. The question then comes to how to cal-

culate the predefined EBVs which satisfy Eq. (1). Therefore,

we will discuss how to generate the proposed EBVs when

given fixed α, d and N ∈ Nα(d) in this section.

Assuming each wi ∈ W (i = {1, 2, . . . , N}) as a line,

we can construct the Grassmannian Matrices to solve the set

W [11]. Specifically, we assemble the vectors in W into a

matrix W ∈ R
d×N , where W = [w1;w2; . . . ;wN ]. Then,

the mutual-coherence of W is defined by:

μ(W ) = max
1≤i,j≤N,i�=j

∣∣w�
i ·wj

∣∣
‖wi‖ ‖wj‖ = max

1≤i,j≤N,i�=j
cos θij ,

(3)

which is transformed to the smallest possible mutual-

coherence possible [11]. Therefore, the lower bound for α is√
N−d

d(N−1) and the upper bound for Nα(d) is 1+ d−1
1−α2d (d ≤

N, 1−α2d > 0). In addition, such matrix is possible only if

N < min(d(d+1)/2, (N−d)(N−d+1)/2). Construction

of such a matrix has a strong connection with the packing of

vectors/subspaces in the Rd-space. In the case of N = d, we

can simply construct a unitary matrix, while in other cases, it

will be very hard to construct such a general Grassmannian

matrix [11].

In the definition of our proposed EBVs, whether the angle

between any two basis vectors wi,wj ∈ W (i 
= j) is

arccosα or arccos−α is equivalent. It is clear that we can

not construct the Grassmannian matrix in a situation such

as N = 30, 000 and d = 200. However, it is still possible

for us to construct W which satisfies Eq. (1). Therefore, as

Algorithm 1 Generation of EBVs in a PyTorch-like style

# d: Dim for each coordinate vectors

# N : The number of coordinate vectors

# α: Threshold of ŵi · ŵj , i �= j
# W : The EBVs matrix W ∈ R

d×N

# slice: In the case of N � d, optimize W by slicing

# λ: Learning rate.

Initialize W randomly;

while True:

#Normalize each row in W
W = Normalize(W )

for i in �N/slice�:

start = i * slice

end = min(N , (i + 1) * slice)

E = F.onehot(arange(start, end), N )

C = (W[start:end]@W.T).abs()-E

loss = ReLU(C − α).sum() # Cutout the

gradient of vector pairs which satisfies

−α ≤ ŵi · ŵj ≤ α
loss.backward()

if max(α, C.max()) < α+ o(α):
Save(W )

break

W = W − λ * W .grad # Update W

an alternative, we adopt Stochastic Gradient Descent [47]

to search the set W that satisfies the definition of EBVs

when given fixed α, d and N . Specifically, we random

initialize a matrix W ∈ R
d×N with normalized rows such

that the angle between any two vectors ŵi, ŵj ∈ R
d, i, j ∈

{1, 2, . . . , N}, i 
= j, ŵi = wi

‖wi‖ can be represented as

arccos(ŵi · ŵj). Then, we cut out the gradient of those

vector pairs which satisfies −α ≤ ŵi · ŵj ≤ α and optimize

the remaining vector pairs. The optimization function of the

generation of EBVs can be formulated by:

argmin
W

∑N−1

i=1

∑N

j>i
max(ŵi · ŵj − α, 0) . (4)

Algorithm 1 provides the code of a simple generation method

of the proposed EBVs in a PyTorch-like style. It is also worth

mentioning that the EBVs matrix W will not be changed in

the following training stage within all the tasks.

3.4. How to achieve the learning objective of EBVs?

Equiangular Basis Vectors (EBVs) provide fixed learn-

ing targets for each independent optimization objective, i.e.,

semantic categories. In the following, we introduce how to

achieve the learning objective of EBVs for all the training

samples. Generally, a deep network is performed to extract

the high-dimensional features, and a fully connected classifi-

cation layer is then deployed to map the features to semantic

categories. While in our proposed EBVs, each category will

be bound to a unique normalized d-dimensional basis vec-

tor in W . Thus, for a training sample x, we directly use a

unified deep model to generate a d-dimensional embedding

v, as well as optimizing the cosine distance between v and



the relevant basis vector. Below we analyze the underlying

distance/loss function used in the training stage.

For our EBVs, many existing distance functions including

squared Euclidean distance, Mahalanobis distance, or cosine

distance are permissible. However, a particular class of

distance functions, e.g., regular Bregman divergences [2],

seems hard to explain and optimize in the proposed EBVs

settings. In addition, intuitively, the straightforward way is

to optimize the spherical distance between any two vectors

on the surface of the hyper-sphere. Therefore, we adopt the

cosine distance as the distance metric, which is widely used

for measuring whether two inputs are similar or dissimilar

and have been widely used in the Tammes problem [55].

Implementations Suppose we have M sample-label pairs

{(x1, y1), (x2, y2), . . . , (xM , yM )} in N classes and their

d-dimensional features v1,v2, . . . ,vM with vi = fθ(xi),
where fθ(·) represents a feature extractor. A straightfor-

ward way to achieve the learning objective of EBVs is to

directly optimize the cosine similarity between each vi and

the corresponding basis vector ŵyi
∈ W .

However, the basis vector itself is not correlated with

the training data since it is predefined. Fitting the training

samples directly to the corresponding basis vectors might dis-

rupt the representation learning. Therefore, we consider the

conventional parametric softmax formulation, of which

for image xi with embedding vi, the probability of it being

recognized as the yi category can be formulated as :

P (y = yi|vi) =
exp(m�

i vi)∑N
j=1 exp(m

�
j vi)

, (5)

where mj is a weight vector for the j-th class. Thus, accord-

ing to Eq. (2) and Eq. (5), the probability of the embedding

vi being recognized as category yi in our proposed EBVs

can be formulated as:

PEBVs(y = yi|vi) =
exp(ŵiv̂i/τ)∑N
j=1 exp(ŵj v̂i/τ)

, (6)

where v̂i denotes the �2-normalized of the embedding vi and

τ is a hyper-parameter of temperature [17,20,64] which usu-

ally used in unsupervised learning. The learning objective is

then to maximize the joint probability
∏M

i=1Pθ(yi|fθ(xi)),
or equivalently to minimize the negative log-likelihood over

the training set which can be formulated as:

J(θ) = −
∑M

i=1
logPEBVs(y = yi|fθ(xi)) . (7)

With this optimization approach, we relax the learning objec-

tive to make the angle between the embedding v of a training

sample and its corresponding basis vector smaller than the

angle between v and the other basis vectors.

3.5. Merits of our EBVs

We briefly summarize the merits of our proposed EBVs

in this section. First of all, the embedding dimension of

EBVs can be manually altered and the trainable parameters

of the classifier will not grow linearly when the number of

categories increases. Specifically, if the embedding dimen-

sion of each image is d′ and the number of categories is N ,

the trainable parameters of a general classifier are d′ × N .

However, with our proposed EBVs, as the dimension of the

embedding for each category is fixed as d, then the trainable

parameters of the classifier are d′ × d. What’s more, d can

be set at least close to
√
2N when N is very large according

to Section 3.3. Experimental results can be found in Table 2

and the supplementary materials.

Secondly, as the proposed EBVs are generated before the

training step and the fixed d-dimensional embedding of each

category will not be changed throughout the optimization

process, EBVs will not introduce a large amount of compu-

tation during the training stage like the metric learning. In

particular, metric learning methods such as pairwise/triplet

embedding [60] are time-consuming, where the complexity

can be O(K2) and O(K3) when given K images from N
categories. However, the complexity of our proposed EBVs

equals O(K). In addition, EBVs are not sensitive to the

optimizers and previous training tricks while they can still

achieve state-of-the-art performance as the results shown

in Table 1 and the supplementary materials. Also, further

results on the downstream tasks can be found in Section 4

and the supplementary materials.

4. Experiments

In this section, quantitative and qualitative experiments

are exhibited on models that end with a k-way fully con-

nected layer with softmax and our proposed method to

demonstrate the effectiveness of the proposed Equiangular

Basis Vectors (EBVs). All experiments are conducted with

8 RTX 3090 GPUs.

4.1. Quantitative results on image classification

4.1.1 Dataset and settings

We conduct the general image classification task on the

ImageNet-1K [9] dataset, which contains 1.28M training

images and 50K validation images from 1,000 different ob-

ject classes. Then, we report ImageNet-1K top-1 accuracy

on the validation set under a single crop setting.

In order to demonstrate the effectiveness of the proposed

EBVs, we follow the state-of-the-art training methods pro-

vided by TorchVision [59] and timm [63]. For fair compar-

isons, we offer the following diverse training settings for the

general classification task.



Table 1. Comparisons on the ImageNet-1K validation set. “FC” denotes models ending with a 1000-way fully connected layer with

softmax. The test size for each image is set as “2242” if there is one result while it is set as “2242/2562” if there exist two results.

Backbone Method Optimizer LR Epoch Setting Params. GFLOPs Test size #Forward pass Top-1 Acc (%)

ResNet-50 FC SGD 0.1 90 A0 25.6M 4.1 2242 600k 77.15

ResNet-50
FC

SGD 0.5 5/100 A1 25.6M 4.1 2242/2562 131k
76.88/77.92

EBVs 77.55/78.73

ResNet-50
FC

SGD 0.5 5/100 A2 25.6M 4.1 2242/2562 131k
77.71/78.59

EBVs 78.14/78.99

ResNet-50*
FC

SGD 0.5 5/600 A2 25.6M 4.1 2242/2562 755k
79.51/ –

EBVs 79.73/80.45

ResNet-50

FC

AdamW

0.001

5/100 A1 25.6M 4.1 2242/2562 131k

72.57/73.79

FC 0.01 72.51/74.03

EBVs 0.01 75.62/77.14

ResNet-50

FC

AdamW

0.001

5/100 A2 25.6M 4.1 2242/2562 131k

75.42/76.48

FC 0.01 NaN

EBVs 0.01 76.46/77.52

Swin-T
FC

AdamW 0.001 5/100 A1 28.3M 4.5 2242 131k
75.64

EBVs 78.37

Swin-T
FC

AdamW 0.001 5/100 A2 28.3M 4.5 2242 131k
79.12

EBVs 79.34
* represents the result of the model with a general fully connected layer with softmax is provided by TorchVision [59].

Setting A0 The offical training setting provided in

ResNet [19]. A 224× 224 crop is randomly sampled from

an image or its horizontal flip, with the per-pixel mean sub-

tracted [27]. It trains the backbone by using SGD optimizer

with momentum as 0.9, weight decay as 1× 10−4 and batch

size as 256. The training iteration is up to 60 × 104. The

standard color augmentation in [27] is used. It adopts the

standard 10-crop testing [27] in the validation stage.

Setting A1 We employ an AdamW [35] or an SGD [47]

optimizer for 100 epochs using a cosine decay learning rate

scheduler and 5 epochs of linear warm-up. The batch size

is set as 1024 and the initial learning rate for the AdamW

optimizer is 0.01 or 0.001 while it is set as 0.5 for the SGD

optimizer. A 224 × 224 crop is randomly sampled from

each image and the weight decay is set as 2 × 10−5. We

perform TrivialAugment [41], which is extremely simple and

can be considered “parameter-free”. We also adopt random

erasing [71] and the probability is set as 0.1.

Setting A2 On the basis of Setting A1, we add label-

smoothing [54] and the value is set as 0.1. We also perform

mixup [69] and cutmix [68]. The setting of hyper-parameters

of the two techniques is the same with TorchVision [59].

We adopt ResNet-50 [19] and Swin-T [32] as the typical

backbone for Convolutional Neural Networks (CNNs) and

Vision Transformers [10]. The hyper-parameters τ for the

proposed EBVs are set as 0.07 for all the following experi-

ments unless otherwise specified.

4.1.2 Main results

Table 1 presents comparisons between deep networks ending

with FC, i.e., a 1000-way classification layer with softmax
and our proposed EBVs. The fixed α, d and N of EBVs are

set as 0.004, 1000 and 1000, respectively. When adopting

ResNet-50 as the backbone, EBVs outperform FC among

all the settings. In addition, when adopting AdamW as the

optimizer, EBVs gain 3.11%/1.04% improvement over FC

under Setting A1 and Setting A2 when using 2242/2562

testing. EBVs still gain around 2.7%/0.2% improvement

on Swin-T under Setting A1 and Setting A2. As previous

training techniques summarised by both TorchVision [59]

and timm [63] are under the setting of FC, we suspect it will

have some impact on the performance of EBVs. We further

conduct ablation studies in the supplementary materials.

4.1.3 Ablation studies

We conduct ablation studies on the dimension d of each basis

vector to demonstrate the merits of our proposed EBVs. Ta-

ble 2 reports ImageNet-1K top-1 accuracy on the validation

set with different dimensions d. Taking d = 100 as an exam-

ple, the dimension of the embedding of an image is set as 100.

We adopt ResNet-50 as the backbone and the setting of all

the experiments follows Setting A2. We use SGD [47] as the

optimizer and the initial learning rate is set as 0.01. The test

size of each image is set as 2242 and 2562. The Min. Ang.

which represents the minimum angle between each two basis

vectors is defined as min1≤i,j≤N,i�=j min(π − arccos(ŵi ·



Table 2. Ablation studies on the dimension of our proposed EBVs.

“EBVs Dim.” denotes the embedding dimension for each category.

The test size for each image is set as 2242 and 2562.

EBVs Dim. EpochMin. Ang.Ave. Del. Ang. Top-1 Acc (%)

100 5/100 82.24◦ 4.84◦ 76.10/76.83

200 5/100 85.41◦ 3.37◦ 77.04/77.83

300 5/100 86.67◦ 2.64◦ 77.25/78.08

400 5/100 87.48◦ 2.18◦ 77.20/78.38

500 5/100 87.99◦ 1.82◦ 77.39/78.34

1000 5/100 89.98◦ 0.01◦ 78.14/78.99
2000 5/100 89.98◦ 0.01◦ 77.87/78.58

100 5/300 82.24◦ 4.84◦ 78.33/79.25

1000 5/300 89.98◦ 0.01◦ 79.10/79.96

Table 3. Object detection and instance segmentation on the COCO

2017 dataset. Models are based on Mask R-CNN [18] and “1×”

denotes we train models for 12 epochs while “3×” denotes 36

epochs. “APb” and “APm” refer to bounding box AP and mask AP,

respectively. Results shaded in gray denote models ending with

the general fully connected classifier while others denote models

ending with our proposed EBVs.

Backbone ScheduleAPbAPb
50APb

75APmAPm
50APm

75

ResNet-50 1× 38.2 58.8 41.4 34.7 55.7 37.2

ResNet-50 (EBVs) 1× 38.3 59.0 42.0 35.2 56.2 37.7
ResNet-50 3× 40.9 61.3 44.8 37.1 58.3 39.9

ResNet-50 (EBVs) 3× 41.1 61.7 44.9 37.7 58.9 40.5
Swin-T 1× 42.7 65.2 46.8 39.3 62.2 42.2

Swin-T (EBVs) 1× 42.8 65.3 47.2 39.4 62.2 42.6

ŵj), arccos(ŵi · ŵj)), where N represents the number of

categories. While the Ave. Del. Ang. which represents the

average angle between each of two basis vectors is defined

as
N(N−1)

2

∑N−1
i=1

∑N
j=i+1

∣∣arccos(ŵi · ŵj)− π
2

∣∣. For a

clearer representation, we adopt an angle instead of a radian.

It can be seen from Table 2 that dimension has an impact on

the performance of a model when training with limited cy-

cles. However, this gap decreases a lot when adopting longer

training cycles. Taking d = 100 and d = 1000 as an exam-

ple, the top-1 accuracy under d = 1000 gains 2.04%/2.16%

improvement over d = 100 when training with 105 epochs

while this gap is reduced to 0.77%/0.71% when training with

305 epochs.

4.2. Empirical evaluations on object detection

Settings Object detection and instance segmentation exper-

iments are conducted on the COCO 2017 benchmark [31],

which contains 118K images in the training set and 5K im-

ages in the validation set. We consider Mask R-CNN [18]

in MMdetection [5] as the detection framework and adopt

Table 4. Results of semantic segmentation on the ADE20K val-

idation set. Results shaded in gray denote models ending with

the general fully connected classifier while others denote models

ending with our proposed EBVs. “1×” denotes we train models

for 80,000 steps while “2×” denotes 160,000 steps.

Backbone Schedule mIoU mIoU(ms+flip)

ResNet-18 1× 38.76 39.81

ResNet-18 (EBVs) 1× 38.98 40.09
ResNet-18 2× 39.23 39.97

ResNet-18 (EBVs) 2× 39.75 40.91
ResNet-50 1× 40.70 41.81

ResNet-50 (EBVs) 1× 42.73 44.19
ResNet-50 2× 42.05 42.78

ResNet-50 (EBVs) 2× 42.44 43.94
Swin-T 2× 44.41 45.79

Swin-T (EBVs) 2× 44.30 45.88

ResNet [19] and Swin Transformer [32] as backbones. For

fair comparisons, we utilize the same settings according to

MMdetection and previous work. We scaled the image to a

maximum of 800 on the short side and 1333 on the long side.

We adopt 50% scale horizontal flip and use SGD [47] with

momentum= 0.9 as the optimizer, the initial learning rate is

0.02. The weight decay equals 0.0001 while the batch size

is 16 for experiments under the backbone of ResNet. For

experiments on Swin Transformer, we use Adam [24] as the

optimizer and the initial learning rate is 0.0001. The weight

decay is changed to 0.05. To demonstrate the effectiveness

of the proposed EBVs, we replace both instance-level and

pixel-level classifiers in the detection framework with EBVs.

In order to control the parameters of each backbone for fair

comparisons, the dimension d of the basis vectors is kept con-

sistent with the number of categories. All backbone models

are pre-trained on the ImageNet-1K training set.

Results Table 3 presents comparisons between the general

framework and our proposed EBVs. When adopting ResNet-

50 as the backbone, the framework ending with EBVs out-

performs those ending with fully connected layers among

six evaluation indicators. While adopting Swin-T as the

backbone, the framework ending with EBVs also achieves

comparative results with state-of-the-art performance.

4.3. Empirical evaluations on semantic segmenta-
tion

Settings Semantic segmentation experiments are con-

ducted on the ADE20K [73], which contains 20,000 images

in the training set and 2,000 images in the validation set. We

adopt FPN [25] and UperNet [65] in MMSEG [6] as segmen-

tation framework and adopt ResNet [19] and Swin Trans-



Figure 2. Representation structure of ResNet-50. Left: Similarity between layers within ResNet-50 ends with a general fully connected

classifier (FC). It shows that the last few layers share minimal similarity with the shallow layers while a few shallow layers also share

minimal similarity with all the other layers. Middle: Similarity between layers within ResNet-50 ends with EBVs. Only the last few layers

share minimal similarity with other layers. Right: Similarity between layers across ResNet-50 ends with a general fully connected layer

with softmax and our proposed EBVs. Around 10% initial layers share a little similarity while the last few layers share the least similarity.

former [32] as backbones. For fair comparisons, we utilize

the same settings in MMSEG. For experiments on ResNet,

we use SGD [47] as the optimizer. The initial learning rate

equals 0.01, weight decay equals 0.0005, momentum equals

0.9 and batch size is set as 16. For experiments on Swin

Transformer, we use AdamW [35] as the optimizer and the

initial learning rate is 0.00006 while the weight decay is

set as 0.01. To perform our proposed method, We modify

pixel-level classifiers in both the decode head and auxiliary

head to EBVs. All backbone models are pre-trained on the

ImageNet-1K training set.

Results According to Table 4, we find that EBVs surpass

the framework ending with fully connected layers as the

classifier under the backbone of ResNet. Additionally, when

the training step is set as 80,000, EBVs gain a higher mIoU

score than the general framework trained for 160,000 steps.

While adopting Swin-T as the backbone, the framework

ending with EBVs still achieving comparative performance.

5. Discussions

We explore whether there are differences in the way EBVs

represent and solve image tasks compared to a fully con-

nected layer with softmax in this section. In order to

answer this question, we have to analyze the features in the

hidden layers as features are usually spread across neurons.

However, different layers generally have different numbers

of neurons. Recently, Raghu et al. [43] and Zhen et al. [70]

applied the Centered Kernel Alignment (CKA) [7, 26] to

solve the above task. CKA is effective because it involves no

constraint on the number of neurons. It is also independent

of the orthogonal transformations of representations [70].

Therefore, we adopt CKA to analyze the above question.

We pick ResNet-50 as the backbone while the experi-

ments on Swin-T can be found in the supplementary mate-

rials. One model ends with a general fully connected (FC)

classifier and another model ends with our proposed EBVs.

Both of the models are pre-trained on the ImageNet-1K [9]

training dataset. We use 49 convolutional layers and the last

fully connected layer. We plot CKA similarities between

all pairs of layers within the whole ImageNet-1K validation

dataset in Figure 2. As shown in Figure 2, for the ResNet-50

model ending with a general FC classifier, the feature sim-

ilarity shows that around 10% initial convolutional layers

almost share no similarity with all the other layers while

they themselves share a high similarity. If we change the last

layer and the learning objective with our proposed EBVs,

these shallow layers then share a relatively higher similarity.

6. Conclusion
In this paper, we proposed Equiangular Basis Vectors

(EBVs) for classification tasks. Different from previous clas-

sifiers and classical metric learning methods, EBVs prede-

fined a fixed embedding for all the semantic categories. The

learning objective of EBVs then changed to minimize the

spherical distance of the embedding of input and each basis

vector. Various experiments on the ImageNet-1K [9], COCO

2017 [31] and ADE20K [73] datasets and ablation studies

also demonstrated the effectiveness of our proposed EBVs.

In the future, we would like to explore relations between

each basis vector pair and embed hierarchies when generat-

ing the proposed EBVs as the normal Euclidean space could

not naturally embed hierarchies on datasets with known se-

mantic hierarchies [16]. We also would like to explore the

performance of EBVs in the case when the number of cate-

gories became very large. In addition, EBVs could also be

regarded as advanced classifiers, it is interesting to adopt

EBVs in other related tasks, e.g., incremental learning, few-

shot learning, etc.
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