Coarse-to-fine: A RNN-based Hierarchical Attention
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v" We propose a novel end-to-end trainable RNN-HA model consisting
of three mutually coupled modules, especially the RNN-based
hierarchical and attention modules which are tailored for this problem.

v" Specifically, the RNN-based hierarchical module models the coarse-to-
fine category hierarchical dependency (i.e., from car model to specific
vehicle) beneath vehicle re-identification. Furthermore, the attention
module is proposed for effectively capturing subtle visual appearance
cues, which is crucial for distinguishing different specific vehicles.

v" We conduct comprehensive experiments on two challenging vehicle
re-identification datasets, and our proposed model achieves superior
performance over competing previous studies on both datasets.
Moreover, by comparing with our baseline methods, we validate the
effectiveness of two proposed key modules.
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Framework of the proposed RNIN-HA model. Our model consists of three
mutually coupled modules, ie., representation learning module, RNN-based

Two benchmark vehicle re-identification datasets: Veri and VehiclelD

Quantitative results on the Veri dataset [Ref |]:

Methods mAP | Top-1|Top-5
LOMO [15] 0.64 | 25.33 | 46.48
BOW-CN [38] 12.20 | 33.91 | 53.69
GoogLeNet [36] 17.89152.32 | 72.17
FACT [19] 18.75 | 52.21 | 72.88
Siamese-Visual [23] {29.48|41.12|60.31
VAMI [42] 50.13 | 77.03 | 90.82
FC-HA (w/o RNN) |47.19]61.56|76.88
RNN-H w/o attention | 48.92 | 63.28 | 78.82
Our RNN-HA 52.88 [66.03 | 80.51
Our RNN-HA (ResNet)|56.80|74.79(87.31

Quantitative results on the VehiclelD dataset [Ref2]:

Methods Test size = 800|Test size = 1,600|Test size = 2,400
Top-1| Top-5 |Top-1| Top-5 |Top-1| Top-5
LOMO [15] 19.7 32.1 18.9 29.5 15.3 25.6
BOW-CN [38] 13.1 22.7 12.9 21.1 10.2 17.9
GoogleNet [36] 47.9 67.4 43.5 63.5 38.2 59.5
FACT [19] 49.5 67.9 44.6 64.2 39.9 60.5
Triplet Loss [32] 40.4 61.7 35.4 54.6 31.9 50.3
CCL [16] 43.6 64.2 37.0 57.1 32.9 53.3
Mixed Diff+CCL [16] 49.0 73.5 42.8 66.8 38.2 61.6
CLVR [13] 62.0 76.0 56.1 71.8 50.6 68.0
VAMI [42] 63.1 83.3 52.8 75.1 47.3 70.3
FC-HA (w/o RNN) 56.7 74.5 53.6 70.6 48.6 66.3
RNN-H w/o attention 64.5 | 788 | 624 75.9 59.0 74.2
Our RNN-HA 68.8 81.9 66.2 79.6 62.6 77.0
Our RNN-HA (672) 74.9 895.3 71.1 82.3 68.0 81.4
Our RNN-HA (ResNet+672)| 83.8| 88.1 |81.9 87.0 81.1 87.4

Qualitative results of visualization of the attention maps on VehiclelD

hierarchical module and attention module.
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