# Coarse-to-fine: A RNN-based Hierarchical Attention Model for Vehicle Re-Identification



Xiu-Shen Wei<sup>1\*</sup>, Chen-Lin Zhang<sup>2\*,</sup> Lingqiao Liu<sup>3</sup>, Chunhua Shen<sup>3</sup>, Jianxin Wu<sup>2</sup>

I Megvii Research Nanjing, Megvii Technology Ltd. (Face++), China 2 National Key Laboratory for Novel Software Technology, Nanjing University, China 3 The University of Adelaide, Adelaide, Australia





## I – Motivation



Humans always firstly determine one vehicle's coarse-grained category, *i.e.*, the car model/type. Then, under the branch of the predicted car model/type, they are going to identify specific vehicles by relying on subtle visual cues, e.g., customized paintings and windshield stickers, at the fine-grained level.

## 3 – Contributions

- ✓ We propose a novel <u>end-to-end trainable RNN-HA</u> model consisting of three mutually coupled modules, especially the RNN-based hierarchical and attention modules which are tailored for this problem.
- ✓ Specifically, the <u>RNN-based hierarchical module</u> models the coarse-tofine category hierarchical dependency (*i.e.*, from car model to specific vehicle) beneath vehicle, residentification. Eurthermore, the attention

vehicle) beneath vehicle re-identification. Furthermore, the <u>attention</u> <u>module</u> is proposed for effectively capturing subtle visual appearance cues, which is crucial for distinguishing different specific vehicles.

 We conduct comprehensive experiments on two challenging vehicle re-identification datasets, and our proposed model <u>achieves superior</u> <u>performance</u> over competing previous studies on both datasets. Moreover, by comparing with our baseline methods, we validate the effectiveness of two proposed key modules.

## 2 – The proposed method: RNN-HA





#### 4 – Experiments

Two benchmark vehicle re-identification datasets: Veri and VehicleID

Quantitative results on the Veri dataset [Ref I]:

| Methods             | mAP   | Top-1 | Top-5 |
|---------------------|-------|-------|-------|
| LOMO [15]           | 9.64  | 25.33 | 46.48 |
| BOW-CN [38]         | 12.20 | 33.91 | 53.69 |
| GoogLeNet [36]      | 17.89 | 52.32 | 72.17 |
| FACT [19]           | 18.75 | 52.21 | 72.88 |
| Siamese-Visual [23] | 29.48 | 41.12 | 60.31 |
| VAMI [42]           | 50.13 | 77.03 | 90.82 |
| FC-HA (w/o RNN)     | 47.19 | 61.56 | 76.88 |
|                     |       |       |       |



| RNN-H w/o attention | 48.92 | 63.28 | (8.82 |
|---------------------|-------|-------|-------|
| Our RNN-HA          | 52.88 | 66.03 | 80.51 |
| Our RNN-HA (ResNet) | 56.80 | 74.79 | 87.31 |

#### Quantitative results on the VehicleID dataset [Ref2]:

| Methods                     | Test size = $800$ Test size = $1,600$ Test size = $2,400$ |             |       |       |       |       |
|-----------------------------|-----------------------------------------------------------|-------------|-------|-------|-------|-------|
| wiethous                    | Top-1                                                     | Top-5       | Top-1 | Top-5 | Top-1 | Top-5 |
| LOMO [15]                   | 19.7                                                      | 32.1        | 18.9  | 29.5  | 15.3  | 25.6  |
| BOW-CN $[38]$               | 13.1                                                      | 22.7        | 12.9  | 21.1  | 10.2  | 17.9  |
| GoogLeNet [36]              | 47.9                                                      | 67.4        | 43.5  | 63.5  | 38.2  | 59.5  |
| FACT $[19]$                 | 49.5                                                      | 67.9        | 44.6  | 64.2  | 39.9  | 60.5  |
| Triplet Loss [32]           | 40.4                                                      | 61.7        | 35.4  | 54.6  | 31.9  | 50.3  |
| CCL [16]                    | 43.6                                                      | 64.2        | 37.0  | 57.1  | 32.9  | 53.3  |
| Mixed Diff+CCL $[16]$       | 49.0                                                      | 73.5        | 42.8  | 66.8  | 38.2  | 61.6  |
| CLVR [13]                   | 62.0                                                      | 76.0        | 56.1  | 71.8  | 50.6  | 68.0  |
| VAMI [42]                   | 63.1                                                      | 83.3        | 52.8  | 75.1  | 47.3  | 70.3  |
| FC-HA (w/o RNN)             | 56.7                                                      | 74.5        | 53.6  | 70.6  | 48.6  | 66.3  |
| RNN-H w/o attention         | 64.5                                                      | 78.8        | 62.4  | 75.9  | 59.0  | 74.2  |
| Our RNN-HA                  | 68.8                                                      | 81.9        | 66.2  | 79.6  | 62.6  | 77.0  |
| Our RNN-HA $(672)$          | 74.9                                                      | 85.3        | 71.1  | 82.3  | 68.0  | 81.4  |
| Our RNN-HA (ResNet $+672$ ) | 83.8                                                      | <b>88.1</b> | 81.9  | 87.0  | 81.1  | 87.4  |

### Qualitative results of visualization of the attention maps on VehicleID









Framework of the proposed RNN-HA model. Our model consists of **three** mutually coupled modules, *i.e.*, <u>representation learning module</u>, <u>RNN-based</u> <u>hierarchical module</u> and <u>attention module</u>.

















## 5 – References

[Ref I] Liu, X. et al., Large-scale vehicle re-identification in urban surveillance videos. ICME'16. [Ref 2] Liu, H. et al., Deep relative distance learning: Tell the difference between similar vehicles. CVPR'16.